NIPS Proceedingsβ

Equality of Opportunity in Classification: A Causal Approach

Part of: Advances in Neural Information Processing Systems 31 (NIPS 2018) pre-proceedings

[PDF] [BibTeX] [Supplemental]

Authors

Conference Event Type: Poster

Abstract

The Equalized Odds (for short, EO) is one of the most popular measures of discrimination used in the supervised learning setting. It ascertains fairness through the balance of the misclassification rates (false positive and negative) across the protected groups -- e.g., in the context of law enforcement, an African-American defendant who would not commit a future crime will have an equal opportunity of being released, compared to a non-recidivating Caucasian defendant. Despite this noble goal, it has been acknowledged in the literature that statistical tests based on the EO are oblivious to the underlying causal mechanisms that generated the disparity in the first place (Hardt et al. 2016). This leads to a critical disconnect between statistical measures readable from the data and the meaning of discrimination in the legal system, where compelling evidence that the observed disparity is tied to a specific causal process deemed unfair by society is required to characterize discrimination. The goal of this paper is to develop a principled approach to connect the statistical disparities characterized by the EO and the underlying, elusive, and frequently unobserved, causal mechanisms that generated such inequality. We start by introducing a new family of counterfactual measures that allows one to explain the misclassification disparities in terms of the underlying mechanisms in an arbitrary, non-parametric structural causal model. This will, in turn, allow legal and data analysts to interpret currently deployed classifiers through causal lens, linking the statistical disparities found in the data to the corresponding causal processes. Leveraging the new family of counterfactual measures, we develop a learning procedure to construct a classifier that is statistically efficient, interpretable, and compatible with the basic human intuition of fairness. We demonstrate our results through experiments in both real (COMPAS) and synthetic datasets.