
Optimal Subsampling with Influence Functions

Daniel Ting
Tableau Software
Seattle, WA, USA

dting@tableau.com

Eric Brochu
Tableau Software

Vancouver, BC, Canada
ebrochu@tableau.com

Abstract

Subsampling is a common and often effective method to deal with the computa-
tional challenges of large datasets. However, for most statistical models, there is no
well-motivated approach for drawing a non-uniform subsample. We show that the
concept of an asymptotically linear estimator and the associated influence function
leads to asymptotically optimal sampling probabilities for a wide class of popular
models. This is the only tight optimality result for subsampling we are aware of as
other methods only provide probabilistic error bounds or optimal rates. We also
show that these optimal weights can differ depending on whether the task is pa-
rameter estimation or prediction. Furthermore, for linear regression models, which
have well-studied procedures for non-uniform subsampling, we empirically show
our optimal influence function based method outperforms previous approaches
even when using approximations to the optimal probabilities.

1 Introduction

As the amount of data increases, the question arises as to how best to deal with the large datasets.
While computational platforms such as Spark [28] and Ray [23] help process large datasets once
a desired model is chosen, simply using smaller data can be a faster solution for exploratory data
modeling, rapid prototyping, or other tasks where the accuracy obtainable from the full dataset is
not needed. Sampling provides a flexible summarization of the data that can be applied to almost all
tasks in a simple, straightforward manner.

Ideally, data is sampled efficiently, preferentially sampling the data that will accurately approximate
the estimates from the full data set. However, we show existing preferential sampling techniques are
inefficient and can demonstrate pathological behavior. Furthermore, most methods are inflexible as
they are derived only for specific linear or logistic regression models.

We propose using the influence function as a measure of sampling importance. The influence function
measures the change in an objective or values of interest due to a single point. It is a particularly
general approach as many model and estimators, such as maximum likelihood and M-estimators,
can be cast in the framework, and it can work with non-differentiable objectives. We prove that the
regularized version of our sampling design is asymptotically optimal among all regularized designs
of the same expected size. While other sampling methods provide probabilistic guarantees on the
resulting samples, we do not know of other results that can claim optimality.

Beyond the improved performance of our method, the influence-based approach allows one to under-
stand the problem of optimal subsampling. The influence function and the notion of asymptotically
linear estimators reduces the problem of accurately approximating an estimate on the full data set to
a problem of calculating the mean over influence functions. Thus, the problem of finding an optimal
sampling probabilities, or sampling design, for estimating a model is converted to the more straight-
forward problem of generating an optimal sampling design for a mean. This design can depend on the
specific task on hand. In particular, efficient sampling designs to estimate the parameters of a model

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Algorithm 1 Basic Influence Based Sampling(X,Y)
Given a model and objective, derive the influence function ψθ or an approximation of it
Compute a pilot estimate of the parameters θ̂.
Draw an importance sample taking (Xi, Yi) with probability πi ∝ ‖ψθ̂(Xi, Yi)‖ under the con-
straint πi ≥ α
Fit a model with the sample using importance weights 1/πi

can substantially differ from efficient sampling designs for predictions even when both use the exact
same model. This fact is also borne out in our experimental results. We explicitly derive sampling
probabilities for linear regression, quantile regression, and generalized linear models (GLMs). In
these examples, the “influence” of the residuals yi − ŷi may be separated from the “influence” of the
regression design or predictors X . As a result, existing approaches are shown to only exploit one of
the two, whereas our method appropriately incorporates both.

1.1 Related work

The dominant subsampling approach in the literature for least squares regression is based on statistical
leverage scores [10, 19]. A number of papers [4, 5, 8, 21] address more general Lp linear regression
problems and derive a corresponding leverage for Lp regression. These methods focus on generating
sampling designs from the matrix of predictors X , and make no or limited use of the responses Y .
The resulting sampling designs are obtained via a relatively expensive to compute random projection
or low distortion embedding. The sampling weights for leverage based sampling are defined by

w(lev)
i = Hii, where Ŷ = HY = XX†Y (1)

with † indicating the Moore-Penrose pseudo-inverse, so that H is the hat matrix.

The gradient-based approach of [29] for linear models and local case-control sampling [13] for
logistic models generate sampling probabilities based on the residuals given a pilot estimate of the
coefficients. Very recent work covers optimal subsampling for logistic regression [27]. The gradient
based approach is similar to ours in that it provides a general method that can be applied across a wide
range of models. Given a differentiable M-estimator objective J(θ) =

∑
i `(θ;xi), gradient-based

sampling defines importance sampling weights

w(grad)
i = ‖∇`(θ;xi)‖. (2)

Other techniques such as SGD [3], the Uluru algorithm [9] and random projection techniques [22]
are relevant for fast model fitting on large datasets. In these cases, the data size is not reduced, and
the result is an estimate for the specific model being fit. In contrast, we focus on sampling as a way
to reduce computational complexity for one or more models while being able to use the sample for
additional purposes, for example, coarse parameter tuning or rapid prototyping on a single machine.

Coreset generation [1, 15] is another technique for generating reduced size datasets that can well
approximate results generated from fitting a model on a full dataset. These techniques provide a
probabilistic guarantee on the quality of the approximation according to some pre-specified sensitivity
and cost metrics and some strong assumptions on the solution. In earlier literature, similar techniques
without specific guarantees were also known as data squashing [11, 20]. We consider our work to be
complementary to the coreset literature. Our work shows that the influence function can be used to
improve the sensitivity measure used in many coreset designs. For example, [15] defines a sensitivity
metric on the log-likelihood for logistic regression while our work shows that choice is inefficient, but
that appropriately scaled derivatives of the log-likelihood define an asymptotically optimal metric.

We also note the connection — or lack thereof — between sampling for statistical purposes and
subsampling for computational purposes. While the former is a fundamental topic in statistics, the
latter discards data, which is typically contrary a statistician’s goals. In sampling, the population
data is unknown, and cost arises from a data collection process. In contrast, the data is known in
subsampling and can be exploited to draw better samples. Size is the main cost in this case. Though
there is limited work on subsampling procedures in the statistics community, several papers have
analyzed statistical properties of these procedures [19, 24].

2

2 Our method

Our key idea is that many parameter estimators can be asymptotically expressed as a mean of
influence vectors. This allows the problem of optimal subsampling for a statistical model to be recast
in terms of the well-studied problem of optimal subsampling for a mean. We give a brief overview
of influence functions and asymptotically linear estimators. The interested reader may refer to [26]
and [14] for more information. We then show how this technique can generate sampling weights. As
the exact influence function is often expensive to compute, we address practical considerations in
implementing our method. Finally, we analyze the asymptotic error of our method and show that
out of all importance sampling distributions satisfying a form of regularization, ours has the lowest
asymptotic variance. We summarize our method in Algorithm 1.

2.1 Influence and asymptotically linear estimators

We consider the class of plug-in estimators θ̂(P) taking a distribution to a real-valued vector of
parameter estimates. This is a highly flexible class of estimators. For example, any M-estimator
θ̂(P) = argminθ EP `(θ,X) is of this form for loss `. The argument for the M-estimator is the
empirical distribution Pn. When it exists, the influence function for this estimator is defined by its
functional Gâteaux derivative

ψθ(x) = lim
ε→0+

1

ε

(
θ̂ ((1− ε)Pθ + εδx)− θ̂(Pθ)

)
(3)

where δx is the Dirac delta measure at x. It represents the infinitesimal change in the estimate by
adding the point x to the sample. The estimator θ̂ is an asymptotically linear estimator with influence
function ψθ if it satisfies

√
n
(
θ̂ − θ

)
=

1√
n

n∑
i=1

ψθ(Xi) + op(1), (4)

with Eψθ = 0, EψTθ ψθ <∞. Here, op(1) denotes convergence in probability in some normed space.

Asymptotically linear estimators are pervasive in statistical modeling. Under sufficient regularity
conditions, M-estimators, maximum likelihood estimators, Z-estimators, non-degenerate U-statistics,
and Generalized Method of Moments estimators are all examples of asymptotically linear estimators.
For maximum likelihood estimation with correctly specified and sufficiently regular models, the
influence function is easily derived. It is the gradient of the log-likelihood, also called the score sθ(x),
scaled by the inverse Fisher information Iθ = Esθ(X)sθ(X)T .

sθ(x) = ∂`(θ;x)/∂θ, ψθ = I−1θ sθ. (5)

2.2 Optimal sampling design and estimation

It is not obvious how one should choose good sampling probabilities. For example, [11, 15] pick
sampling weights to best approximate an objective function. For least squares regression, this is
equivalent to sampling with probability proportional to the squared residuals. However, Fig. 1 shows
how this can actually perform worse than uniform sampling.

The reason for this poor performance is that accurately estimating the loss itself is different from
accurately estimating the actual quantity of interest, the minimizer of the loss. The corresponding
optimal sampling probabilities for each task are also different. The theory of asymptotically linear
estimators addresses the problem of mapping the quantity of interest to optimal sampling probabilities
in two ways. Influence functions measure how much a data point changes the actual quantity of
interest, in other words, its importance for the task at hand. An asymptotic linear expansion into
independent, zero mean influence vectors then reduces the problem of drawing an optimal sample for
an estimator to the problem of drawing an optimal sample for a multivariate mean. We further reduce
this to a well-studied problem of designing optimal sampling probabilities for a univariate mean.

First, we describe optimal independent (Poisson) sampling for a univariate mean. Let independent
Zi ∼ Bernoulli(πi) indicate if xi ∈ R is included in the sample. An optimal design with expected

3

●

●

●

●1

10

2000 4000 6000

expectedSize

E
xc

es
s

M
S

E

● exact leverage exact root leverage

Excess MSE of predictions

●

●

●

●

10

2000 4000 6000

expectedSize

E
xc

es
s

M
S

E

● residual squared residual uniform

Excess MSE of predictions

●

●

●

●

0.0

0.1

0.2

0.3

2000 4000 6000

expectedSize

||β̂
−

β|
|2

 ||
β|

|2

MSE of coefficients

●

●

●

●

0.01

0.10

1.00

2000 4000 6000

expectedSize

E
xc

es
s

M
S

E

Excess MSE of predictions

● design

influence

prediction influence

residual

root leverage

uniform

Figure 1: Left: Naive sampling weights versus influence function derived weights on Gaussian data
where 5% of points are modified to have high leverage. Root leverage outperforms leverage as
predicted by theory. Squared residuals as weights optimally approximate the squared loss but perform
worse than uniform weights when approximating the true predictions. Right: The influence based
weights are separated in the contributions of the regressors and the residual for the CASP data set.
For predictions the contribution of the regressors is the root leverage score. In this case, the regressors
are more important than the residual.

size nsub for minimizing the variance is given by

π(opt) = argmin∑
πj=nsub

∑
i

(
xi
πi

)2

πi(1− πi), π(opt)
i = min{λ|xi|, 1} (6)

for λ such that
∑
i π

(opt)
i = nsub. Such a scheme is a probability proportional to size (PPS) design

with respect to the size measure xi.

To reduce the problem of multiple parameter estimation for an asymptotically unbiased and asymptot-
ically linear estimator, consider the trace of the variance

Tr

(
Var

(
n∑
i=1

Zi
πi
ψθ(xi)

))
=

n∑
i=1

(
‖ψθ(xi)‖

πi

)2

πi(1− πi). (7)

A PPS design with size equal to the norm of the influence function is optimal for minimizing the
trace of the asymptotic variance. This optimality statement is made more precise in section 5.

3 Examples

We examine the influence functions for linear least squares regression, logistic regression and GLMs,
and quantile regression. While asymptotically linear estimators encompass a wider class of estimators,
we focus on this particular subset as we can demonstrate they can be computed efficiently and they
share some structure that allows us to understand the problem by decomposing the influence into
informative residual and design components.

We also examine the difference between targeting accurate estimation of parameters versus predictions.
The form of the weights provides insight on sampling methods by allowing a decomposition into
regression design and residual effects.

3.1 Linear Least Squares

For linear regression models, the influence function for the coefficients θ̂ is given by

ψθ(xi, yi) =
(
yi − xTi θ

)
Σ−1xi (8)

where Σ = 1
n

(
XTX

)
is the empirical second moment matrix and θ are the true coefficients. Taking

the norm of the influence yields the sampling weight.

This weight differs from gradient-based sampling weights, ‖(yi − ŷi)xi‖, given in (2) only by the
scaling Σ−1. The influence-based weights appropriate change with scalings of the data while the
gradient-based approach displays pathological behavior. A parameter θj is made more important
by making it larger, or equivalently, by scaling the jth coordinate of the data to be smaller. Under
gradient-based sampling, the opposite occurs; a coordinate is less important as it is scaled to be
smaller. As shown in Fig. 2, influence-based sampling correctly increases the importance.

4

●
●

●
●●
●●●●●
●
●
●

●

●
●

●

●

●●
●●
●
●
●●
●●

●●
●

●
●

●

●●●
●
●

●
●
●●

●●

●

●
●

●
●

●
●●●
●
●

●
●●
●

●

●
●

●
●●
●

●

●●●
●
●

●
●
●●

●
●

●●●

●
●

●●

●

●
●●●●●
●
●●

●
●●
●
●
●
●

●
●

●●●●

●

●
●
●●

●
●

●

●●
●
●●
●
●
●●●●
●

●
●
●

●●
●

●

●

●
●
●

●

●●
●

●

●

●●
●

●●

●

●

●

●
●●●
●
●
●●
●

●

●
●
●

●●●●

●

●

●●
●
●

●
●
●
●

●
●

●
●
●●

●●

●

●

●

●●●
●●
●

●

●

●

●

●
●
●

●

●
●

●

●

●
●●
●
●●
●

●

●●

●

●
●
●●
●

●
●

●

●●
●

●
●

●
●●●

●
●●
●

●
●
●
●

●

●●
●
●

●

●
●
●

●

●●
●●

●
●●
●

●
●●

●
●●●●
●
●●

●●●

●●
●

●
●●

●

●●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●●●

●
●●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●

●

●●●
●

●
●
●
●
●
●
●
●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●

●●

●

●●●

●

●

●

●●●●
●
●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●●

●
●
●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●
●
●

●

●

●

●

●●
●●

●
●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●
●●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●
●

●●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●●
●

●
●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●
●●●

●

●
●

●

●●
●

●

●●

●

●

●

●
●

●
●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●
●
●●

●

●

●
●

●

●

●

●●

●

●

●●

●●

●
●

●

●●
●

●

●

●

●

●
●●●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●●

●

●

●●●●

●

●

●
●

●

●
●

●
●●

●

●●

●
●●

●

●

●●

●

●

●

●

●
●

●●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●●

●●
●

●

●●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●
●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●
●
●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●
●●

●

●

●●●
●
●
●●●●

●

●

●

●

●●●

●

●
●
●

●

●
●

●

●

●
●●●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●
●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●
●

●

●
●
●
●●

●●

●
●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●
●

●
●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●●●●●

●

●

●
●
●

●●

●
●

●

●

●

●

●●

●

●
●

●●

●●
●

●

●

●●●

●
●
●
●●
●●

●

●●●●●

●●

●●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●●

●
●
●
●●
●

●●

●

●

●●

●
●●●
●

●

●

●

●
●

●

●●
●
●

●

●

●

●
●

●●

●

●

●

●●
●

●

●
●

●
●●

●

●
●●

●

●●
●●

●

●

●●
●

●
●●●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●
●
●

●

●

●

●

●
●

●
●

●

●

●
●●
●

●
●
●

●

●
●
●●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●
●

●
●
●

●●
●

●
●
●●●

●

●
●

●
●

●
●

●

●

●
●●●

●

●
●
●

●●●

●
●●
●

●●●●●
●

●
●

●
●

●
●●
●●●●
●
●
●
●
●
●
●

●

●
●●
●●

●●
●●
●
●●

●
●

●●

●
●
●
●
●

●
●

●

●
●
●●●●
●

●

●

●

●

●●

●

●

●
●
●●

●
●
●

●

●●●

●
●
●
●

●●

●

●

●

●●
●

●●

●●●
●
●

●
●
●

●●
●
●

●

●

●

●

●●●
●●●

●●
●
●●●

●
●

●

●
●●
●

●
●
●●
●

●
●●

●●
●

●

●●

●

●

●

●
●

●
●●

●

●

●

●

●
●●
●

●
●●●

●

●●●

●●

●●
●●●●●●

●

●

●

●

●
●●●
●
●●●
●
●●●
●
●●

●

●

●
●

−5

0

5

10

−1.0 −0.5 0.0 0.5 1.0

leverage

●
●

●
●●
●●●●●
●
●
●

●

●
●

●

●

●●
●●
●
●
●●
●●

●●
●

●
●

●

●●●
●
●

●
●
●●

●●

●

●
●

●
●

●
●●●
●
●

●
●●
●

●

●
●

●
●●
●

●

●●●
●
●

●
●
●●

●
●

●●●

●
●

●●

●

●
●●●●●
●
●●

●
●●
●
●
●
●

●
●

●●●●

●

●
●
●●

●
●

●

●●
●
●●
●
●
●●●●
●

●
●
●

●●
●

●

●

●
●
●

●

●●
●

●

●

●●
●

●●

●

●

●

●
●●●
●
●
●●
●

●

●
●
●

●●●●

●

●

●●
●
●

●
●
●
●

●
●

●
●
●●

●●

●

●

●

●●●
●●
●

●

●

●

●

●
●
●

●

●
●

●

●

●
●●
●
●●
●

●

●●

●

●
●
●●
●

●
●

●

●●
●

●
●

●
●●●

●
●●
●

●
●
●
●

●

●●
●
●

●

●
●
●

●

●●
●●

●
●●
●

●
●●

●
●●●●
●
●●

●●●

●●
●

●
●●

●

●●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●●●

●
●●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●

●

●●●
●

●
●
●
●
●
●
●
●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●

●●

●

●●●

●

●

●

●●●●
●
●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●●

●
●
●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●
●
●

●

●

●

●

●●
●●

●
●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●
●●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●
●

●●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●●
●

●
●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●
●●●

●

●
●

●

●●
●

●

●●

●

●

●

●
●

●
●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●
●
●●

●

●

●
●

●

●

●

●●

●

●

●●

●●

●
●

●

●●
●

●

●

●

●

●
●●●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●●

●

●

●●●●

●

●

●
●

●

●
●

●
●●

●

●●

●
●●

●

●

●●

●

●

●

●

●
●

●●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●●

●●
●

●

●●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●
●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●
●
●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●
●●

●

●

●●●
●
●
●●●●

●

●

●

●

●●●

●

●
●
●

●

●
●

●

●

●
●●●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●
●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●
●

●

●
●
●
●●

●●

●
●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●
●

●
●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●●●●●

●

●

●
●
●

●●

●
●

●

●

●

●

●●

●

●
●

●●

●●
●

●

●

●●●

●
●
●
●●
●●

●

●●●●●

●●

●●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●●

●
●
●
●●
●

●●

●

●

●●

●
●●●
●

●

●

●

●
●

●

●●
●
●

●

●

●

●
●

●●

●

●

●

●●
●

●

●
●

●
●●

●

●
●●

●

●●
●●

●

●

●●
●

●
●●●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●
●
●

●

●

●

●

●
●

●
●

●

●

●
●●
●

●
●
●

●

●
●
●●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●
●

●
●
●

●●
●

●
●
●●●

●

●
●

●
●

●
●

●

●

●
●●●

●

●
●
●

●●●

●
●●
●

●●●●●
●

●
●

●
●

●
●●
●●●●
●
●
●
●
●
●
●

●

●
●●
●●

●●
●●
●
●●

●
●

●●

●
●
●
●
●

●
●

●

●
●
●●●●
●

●

●

●

●

●●

●

●

●
●
●●

●
●
●

●

●●●

●
●
●
●

●●

●

●

●

●●
●

●●

●●●
●
●

●
●
●

●●
●
●

●

●

●

●

●●●
●●●

●●
●
●●●

●
●

●

●
●●
●

●
●
●●
●

●
●●

●●
●

●

●●

●

●

●

●
●

●
●●

●

●

●

●

●
●●
●

●
●●●

●

●●●

●●

●●
●●●●●●

●

●

●

●

●
●●●
●
●●●
●
●●●
●
●●

●

●

●
●

−5

0

5

10

−1.0 −0.5 0.0 0.5 1.0

gradient

●
●

●
●●
●●●●●
●
●
●

●

●
●

●

●

●●
●●
●
●
●●
●●

●●
●

●
●

●

●●●
●
●

●
●
●●

●●

●

●
●

●
●

●
●●●
●
●

●
●●
●

●

●
●

●
●●
●

●

●●●
●
●

●
●
●●

●
●

●●●

●
●

●●

●

●
●●●●●
●
●●

●
●●
●
●
●
●

●
●

●●●●

●

●
●
●●

●
●

●

●●
●
●●
●
●
●●●●
●

●
●
●

●●
●

●

●

●
●
●

●

●●
●

●

●

●●
●

●●

●

●

●

●
●●●
●
●
●●
●

●

●
●
●

●●●●

●

●

●●
●
●

●
●
●
●

●
●

●
●
●●

●●

●

●

●

●●●
●●
●

●

●

●

●

●
●
●

●

●
●

●

●

●
●●
●
●●
●

●

●●

●

●
●
●●
●

●
●

●

●●
●

●
●

●
●●●

●
●●
●

●
●
●
●

●

●●
●
●

●

●
●
●

●

●●
●●

●
●●
●

●
●●

●
●●●●
●
●●

●●●

●●
●

●
●●

●

●●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●●●

●
●●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●

●

●●●
●

●
●
●
●
●
●
●
●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●

●●

●

●●●

●

●

●

●●●●
●
●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●●

●
●
●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●
●
●

●

●

●

●

●●
●●

●
●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●
●●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●
●

●●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●●
●

●
●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●
●●●

●

●
●

●

●●
●

●

●●

●

●

●

●
●

●
●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●
●
●●

●

●

●
●

●

●

●

●●

●

●

●●

●●

●
●

●

●●
●

●

●

●

●

●
●●●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●●

●

●

●●●●

●

●

●
●

●

●
●

●
●●

●

●●

●
●●

●

●

●●

●

●

●

●

●
●

●●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●●

●●
●

●

●●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●
●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●
●
●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●
●●

●

●

●●●
●
●
●●●●

●

●

●

●

●●●

●

●
●
●

●

●
●

●

●

●
●●●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●
●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●
●

●

●
●
●
●●

●●

●
●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●
●

●
●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●●●●●

●

●

●
●
●

●●

●
●

●

●

●

●

●●

●

●
●

●●

●●
●

●

●

●●●

●
●
●
●●
●●

●

●●●●●

●●

●●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●●

●
●
●
●●
●

●●

●

●

●●

●
●●●
●

●

●

●

●
●

●

●●
●
●

●

●

●

●
●

●●

●

●

●

●●
●

●

●
●

●
●●

●

●
●●

●

●●
●●

●

●

●●
●

●
●●●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●
●
●

●

●

●

●

●
●

●
●

●

●

●
●●
●

●
●
●

●

●
●
●●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●
●

●
●
●

●●
●

●
●
●●●

●

●
●

●
●

●
●

●

●

●
●●●

●

●
●
●

●●●

●
●●
●

●●●●●
●

●
●

●
●

●
●●
●●●●
●
●
●
●
●
●
●

●

●
●●
●●

●●
●●
●
●●

●
●

●●

●
●
●
●
●

●
●

●

●
●
●●●●
●

●

●

●

●

●●

●

●

●
●
●●

●
●
●

●

●●●

●
●
●
●

●●

●

●

●

●●
●

●●

●●●
●
●

●
●
●

●●
●
●

●

●

●

●

●●●
●●●

●●
●
●●●

●
●

●

●
●●
●

●
●
●●
●

●
●●

●●
●

●

●●

●

●

●

●
●

●
●●

●

●

●

●

●
●●
●

●
●●●

●

●●●

●●

●●
●●●●●●

●

●

●

●

●
●●●
●
●●●
●
●●●
●
●●

●

●

●
●

−5

0

5

10

−1.0 −0.5 0.0 0.5 1.0

influence

●
●

●
●●
●●●●●
●
●
●

●

●
●

●

●

●●
●●
●
●
●●
●●

●●
●

●
●

●

●●●
●
●

●
●
●●

●●

●

●
●

●
●

●
●●●
●
●

●
●●
●

●

●
●

●
●●
●

●

●●●
●
●

●
●
●●

●
●

●●●

●
●

●●

●

●
●●●●●
●
●●

●
●●
●
●
●
●

●
●

●●●●

●

●
●
●●

●
●

●

●●
●
●●
●
●
●●●●
●

●
●
●

●●
●

●

●

●
●
●

●

●●
●

●

●

●●
●

●●

●

●

●

●
●●●
●
●
●●
●

●

●
●
●

●●●●

●

●

●●
●
●

●
●
●
●

●
●

●
●
●●

●●

●

●

●

●●●
●●
●

●

●

●

●

●
●
●

●

●
●

●

●

●
●●
●
●●
●

●

●●

●

●
●
●●
●

●
●

●

●●
●

●
●

●
●●●

●
●●
●

●
●
●
●

●

●●
●
●

●

●
●
●

●

●●
●●

●
●●
●

●
●●

●
●●●●
●
●●

●●●

●●
●

●
●●

●

●●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●●●

●
●●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●

●

●●●
●

●
●
●
●
●
●
●
●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●

●●

●

●●●

●

●

●

●●●●
●
●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●●

●
●
●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●
●
●

●

●

●

●

●●
●●

●
●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●
●●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●
●

●●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●●
●

●
●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●
●●●

●

●
●

●

●●
●

●

●●

●

●

●

●
●

●
●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●
●
●●

●

●

●
●

●

●

●

●●

●

●

●●

●●

●
●

●

●●
●

●

●

●

●

●
●●●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●●

●

●

●●●●

●

●

●
●

●

●
●

●
●●

●

●●

●
●●

●

●

●●

●

●

●

●

●
●

●●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●●

●●
●

●

●●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●
●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●
●
●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●
●●

●

●

●●●
●
●
●●●●

●

●

●

●

●●●

●

●
●
●

●

●
●

●

●

●
●●●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●
●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●
●

●

●
●
●
●●

●●

●
●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●
●

●
●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●●●●●

●

●

●
●
●

●●

●
●

●

●

●

●

●●

●

●
●

●●

●●
●

●

●

●●●

●
●
●
●●
●●

●

●●●●●

●●

●●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●●

●
●
●
●●
●

●●

●

●

●●

●
●●●
●

●

●

●

●
●

●

●●
●
●

●

●

●

●
●

●●

●

●

●

●●
●

●

●
●

●
●●

●

●
●●

●

●●
●●

●

●

●●
●

●
●●●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●
●
●

●

●

●

●

●
●

●
●

●

●

●
●●
●

●
●
●

●

●
●
●●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●
●

●
●
●

●●
●

●
●
●●●

●

●
●

●
●

●
●

●

●

●
●●●

●

●
●
●

●●●

●
●●
●

●●●●●
●

●
●

●
●

●
●●
●●●●
●
●
●
●
●
●
●

●

●
●●
●●

●●
●●
●
●●

●
●

●●

●
●
●
●
●

●
●

●

●
●
●●●●
●

●

●

●

●

●●

●

●

●
●
●●

●
●
●

●

●●●

●
●
●
●

●●

●

●

●

●●
●

●●

●●●
●
●

●
●
●

●●
●
●

●

●

●

●

●●●
●●●

●●
●
●●●

●
●

●

●
●●
●

●
●
●●
●

●
●●

●●
●

●

●●

●

●

●

●
●

●
●●

●

●

●

●

●
●●
●

●
●●●

●

●●●

●●

●●
●●●●●●

●

●

●

●

●
●●●
●
●●●
●
●●●
●
●●

●

●

●
●

−5

0

5

10

−1.0 −0.5 0.0 0.5 1.0

residual

●
●

●
●●
●●●●●
●
●
●

●

●
●

●

●

●●
●●
●
●
●●
●●

●●
●

●
●

●

●●●
●
●

●
●
●●

●●

●

●
●

●
●

●
●●●
●
●

●
●●
●

●

●
●

●
●●
●

●

●●●
●
●

●
●
●●

●
●

●●●

●
●

●●

●

●
●●●●●
●
●●

●
●●
●
●
●
●

●
●

●●●●

●

●
●
●●

●
●

●

●●
●
●●
●
●
●●●●
●

●
●
●

●●
●

●

●

●
●
●

●

●●
●

●

●

●●
●

●●

●

●

●

●
●●●
●
●
●●
●

●

●
●
●

●●●●

●

●

●●
●
●

●
●
●
●

●
●

●
●
●●

●●

●

●

●

●●●
●●
●

●

●

●

●

●
●
●

●

●
●

●

●

●
●●
●
●●
●

●

●●

●

●
●
●●
●

●
●

●

●●
●

●
●

●
●●●

●
●●
●

●
●
●
●

●

●●
●
●

●

●
●
●

●

●●
●●

●
●●
●

●
●●

●
●●●●
●
●●

●●●

●●
●

●
●●

●

●●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●●●

●
●●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●

●

●●●
●

●
●
●
●
●
●
●
●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●

●●

●

●●●

●

●

●

●●●●
●
●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●●

●
●
●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●
●
●

●

●

●

●

●●
●●

●
●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●
●●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●
●

●●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●●
●

●
●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●
●●●

●

●
●

●

●●
●

●

●●

●

●

●

●
●

●
●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●
●
●●

●

●

●
●

●

●

●

●●

●

●

●●

●●

●
●

●

●●
●

●

●

●

●

●
●●●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●●

●

●

●●●●

●

●

●
●

●

●
●

●
●●

●

●●

●
●●

●

●

●●

●

●

●

●

●
●

●●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●●

●●
●

●

●●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●
●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●
●
●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●
●●

●

●

●●●
●
●
●●●●

●

●

●

●

●●●

●

●
●
●

●

●
●

●

●

●
●●●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●
●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●
●

●

●
●
●
●●

●●

●
●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●
●

●
●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●●●●●

●

●

●
●
●

●●

●
●

●

●

●

●

●●

●

●
●

●●

●●
●

●

●

●●●

●
●
●
●●
●●

●

●●●●●

●●

●●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●●

●
●
●
●●
●

●●

●

●

●●

●
●●●
●

●

●

●

●
●

●

●●
●
●

●

●

●

●
●

●●

●

●

●

●●
●

●

●
●

●
●●

●

●
●●

●

●●
●●

●

●

●●
●

●
●●●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●
●
●

●

●

●

●

●
●

●
●

●

●

●
●●
●

●
●
●

●

●
●
●●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●
●

●
●
●

●●
●

●
●
●●●

●

●
●

●
●

●
●

●

●

●
●●●

●

●
●
●

●●●

●
●●
●

●●●●●
●

●
●

●
●

●
●●
●●●●
●
●
●
●
●
●
●

●

●
●●
●●

●●
●●
●
●●

●
●

●●

●
●
●
●
●

●
●

●

●
●
●●●●
●

●

●

●

●

●●

●

●

●
●
●●

●
●
●

●

●●●

●
●
●
●

●●

●

●

●

●●
●

●●

●●●
●
●

●
●
●

●●
●
●

●

●

●

●

●●●
●●●

●●
●
●●●

●
●

●

●
●●
●

●
●
●●
●

●
●●

●●
●

●

●●

●

●

●

●
●

●
●●

●

●

●

●

●
●●
●

●
●●●

●

●●●

●●

●●
●●●●●●

●

●

●

●

●
●●●
●
●●●
●
●●●
●
●●

●

●

●
●

−5

0

5

10

−1.0 −0.5 0.0 0.5 1.0

leverage

●
●

●
●●
●●●●●
●
●
●

●

●
●

●

●

●●
●●
●
●
●●
●●

●●
●

●
●

●

●●●
●
●

●
●
●●

●●

●

●
●

●
●

●
●●●
●
●

●
●●
●

●

●
●

●
●●
●

●

●●●
●
●

●
●
●●

●
●

●●●

●
●

●●

●

●
●●●●●
●
●●

●
●●
●
●
●
●

●
●

●●●●

●

●
●
●●

●
●

●

●●
●
●●
●
●
●●●●
●

●
●
●

●●
●

●

●

●
●
●

●

●●
●

●

●

●●
●

●●

●

●

●

●
●●●
●
●
●●
●

●

●
●
●

●●●●

●

●

●●
●
●

●
●
●
●

●
●

●
●
●●

●●

●

●

●

●●●
●●
●

●

●

●

●

●
●
●

●

●
●

●

●

●
●●
●
●●
●

●

●●

●

●
●
●●
●

●
●

●

●●
●

●
●

●
●●●

●
●●
●

●
●
●
●

●

●●
●
●

●

●
●
●

●

●●
●●

●
●●
●

●
●●

●
●●●●
●
●●

●●●

●●
●

●
●●

●

●●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●●●

●
●●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●

●

●●●
●

●
●
●
●
●
●
●
●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●

●●

●

●●●

●

●

●

●●●●
●
●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●●

●
●
●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●
●
●

●

●

●

●

●●
●●

●
●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●
●●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●
●

●●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●●
●

●
●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●
●●●

●

●
●

●

●●
●

●

●●

●

●

●

●
●

●
●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●
●
●●

●

●

●
●

●

●

●

●●

●

●

●●

●●

●
●

●

●●
●

●

●

●

●

●
●●●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●●

●

●

●●●●

●

●

●
●

●

●
●

●
●●

●

●●

●
●●

●

●

●●

●

●

●

●

●
●

●●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●●

●●
●

●

●●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●
●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●
●
●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●
●●

●

●

●●●
●
●
●●●●

●

●

●

●

●●●

●

●
●
●

●

●
●

●

●

●
●●●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●
●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●
●

●

●
●
●
●●

●●

●
●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●
●

●
●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●●●●●

●

●

●
●
●

●●

●
●

●

●

●

●

●●

●

●
●

●●

●●
●

●

●

●●●

●
●
●
●●
●●

●

●●●●●

●●

●●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●●

●
●
●
●●
●

●●

●

●

●●

●
●●●
●

●

●

●

●
●

●

●●
●
●

●

●

●

●
●

●●

●

●

●

●●
●

●

●
●

●
●●

●

●
●●

●

●●
●●

●

●

●●
●

●
●●●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●
●
●

●

●

●

●

●
●

●
●

●

●

●
●●
●

●
●
●

●

●
●
●●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●
●

●
●
●

●●
●

●
●
●●●

●

●
●

●
●

●
●

●

●

●
●●●

●

●
●
●

●●●

●
●●
●

●●●●●
●

●
●

●
●

●
●●
●●●●
●
●
●
●
●
●
●

●

●
●●
●●

●●
●●
●
●●

●
●

●●

●
●
●
●
●

●
●

●

●
●
●●●●
●

●

●

●

●

●●

●

●

●
●
●●

●
●
●

●

●●●

●
●
●
●

●●

●

●

●

●●
●

●●

●●●
●
●

●
●
●

●●
●
●

●

●

●

●

●●●
●●●

●●
●
●●●

●
●

●

●
●●
●

●
●
●●
●

●
●●

●●
●

●

●●

●

●

●

●
●

●
●●

●

●

●

●

●
●●
●

●
●●●

●

●●●

●●

●●
●●●●●●

●

●

●

●

●
●●●
●
●●●
●
●●●
●
●●

●

●

●
●

−5

0

5

10

−1.0 −0.5 0.0 0.5 1.0

gradient

●
●

●
●●
●●●●●
●
●
●

●

●
●

●

●

●●
●●
●
●
●●
●●

●●
●

●
●

●

●●●
●
●

●
●
●●

●●

●

●
●

●
●

●
●●●
●
●

●
●●
●

●

●
●

●
●●
●

●

●●●
●
●

●
●
●●

●
●

●●●

●
●

●●

●

●
●●●●●
●
●●

●
●●
●
●
●
●

●
●

●●●●

●

●
●
●●

●
●

●

●●
●
●●
●
●
●●●●
●

●
●
●

●●
●

●

●

●
●
●

●

●●
●

●

●

●●
●

●●

●

●

●

●
●●●
●
●
●●
●

●

●
●
●

●●●●

●

●

●●
●
●

●
●
●
●

●
●

●
●
●●

●●

●

●

●

●●●
●●
●

●

●

●

●

●
●
●

●

●
●

●

●

●
●●
●
●●
●

●

●●

●

●
●
●●
●

●
●

●

●●
●

●
●

●
●●●

●
●●
●

●
●
●
●

●

●●
●
●

●

●
●
●

●

●●
●●

●
●●
●

●
●●

●
●●●●
●
●●

●●●

●●
●

●
●●

●

●●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●●●

●
●●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●

●

●●●
●

●
●
●
●
●
●
●
●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●

●●

●

●●●

●

●

●

●●●●
●
●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●●

●
●
●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●
●
●

●

●

●

●

●●
●●

●
●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●
●●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●
●

●●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●●
●

●
●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●
●●●

●

●
●

●

●●
●

●

●●

●

●

●

●
●

●
●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●
●
●●

●

●

●
●

●

●

●

●●

●

●

●●

●●

●
●

●

●●
●

●

●

●

●

●
●●●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●●

●

●

●●●●

●

●

●
●

●

●
●

●
●●

●

●●

●
●●

●

●

●●

●

●

●

●

●
●

●●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●●

●●
●

●

●●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●
●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●
●
●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●
●●

●

●

●●●
●
●
●●●●

●

●

●

●

●●●

●

●
●
●

●

●
●

●

●

●
●●●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●
●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●
●

●

●
●
●
●●

●●

●
●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●
●

●
●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●●●●●

●

●

●
●
●

●●

●
●

●

●

●

●

●●

●

●
●

●●

●●
●

●

●

●●●

●
●
●
●●
●●

●

●●●●●

●●

●●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●●

●
●
●
●●
●

●●

●

●

●●

●
●●●
●

●

●

●

●
●

●

●●
●
●

●

●

●

●
●

●●

●

●

●

●●
●

●

●
●

●
●●

●

●
●●

●

●●
●●

●

●

●●
●

●
●●●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●
●
●

●

●

●

●

●
●

●
●

●

●

●
●●
●

●
●
●

●

●
●
●●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●
●

●
●
●

●●
●

●
●
●●●

●

●
●

●
●

●
●

●

●

●
●●●

●

●
●
●

●●●

●
●●
●

●●●●●
●

●
●

●
●

●
●●
●●●●
●
●
●
●
●
●
●

●

●
●●
●●

●●
●●
●
●●

●
●

●●

●
●
●
●
●

●
●

●

●
●
●●●●
●

●

●

●

●

●●

●

●

●
●
●●

●
●
●

●

●●●

●
●
●
●

●●

●

●

●

●●
●

●●

●●●
●
●

●
●
●

●●
●
●

●

●

●

●

●●●
●●●

●●
●
●●●

●
●

●

●
●●
●

●
●
●●
●

●
●●

●●
●

●

●●

●

●

●

●
●

●
●●

●

●

●

●

●
●●
●

●
●●●

●

●●●

●●

●●
●●●●●●

●

●

●

●

●
●●●
●
●●●
●
●●●
●
●●

●

●

●
●

−5

0

5

10

−1.0 −0.5 0.0 0.5 1.0

influence

●
●

●
●●
●●●●●
●
●
●

●

●
●

●

●

●●
●●
●
●
●●
●●

●●
●

●
●

●

●●●
●
●

●
●
●●

●●

●

●
●

●
●

●
●●●
●
●

●
●●
●

●

●
●

●
●●
●

●

●●●
●
●

●
●
●●

●
●

●●●

●
●

●●

●

●
●●●●●
●
●●

●
●●
●
●
●
●

●
●

●●●●

●

●
●
●●

●
●

●

●●
●
●●
●
●
●●●●
●

●
●
●

●●
●

●

●

●
●
●

●

●●
●

●

●

●●
●

●●

●

●

●

●
●●●
●
●
●●
●

●

●
●
●

●●●●

●

●

●●
●
●

●
●
●
●

●
●

●
●
●●

●●

●

●

●

●●●
●●
●

●

●

●

●

●
●
●

●

●
●

●

●

●
●●
●
●●
●

●

●●

●

●
●
●●
●

●
●

●

●●
●

●
●

●
●●●

●
●●
●

●
●
●
●

●

●●
●
●

●

●
●
●

●

●●
●●

●
●●
●

●
●●

●
●●●●
●
●●

●●●

●●
●

●
●●

●

●●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●●●

●
●●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●

●

●●●
●

●
●
●
●
●
●
●
●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●

●●

●

●●●

●

●

●

●●●●
●
●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●●

●
●
●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●
●
●

●

●

●

●

●●
●●

●
●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●
●●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●
●

●●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●●
●

●
●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●
●●●

●

●
●

●

●●
●

●

●●

●

●

●

●
●

●
●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●
●
●●

●

●

●
●

●

●

●

●●

●

●

●●

●●

●
●

●

●●
●

●

●

●

●

●
●●●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●●

●

●

●●●●

●

●

●
●

●

●
●

●
●●

●

●●

●
●●

●

●

●●

●

●

●

●

●
●

●●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●●

●●
●

●

●●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●
●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●
●
●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●
●●

●

●

●●●
●
●
●●●●

●

●

●

●

●●●

●

●
●
●

●

●
●

●

●

●
●●●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●
●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●
●

●

●
●
●
●●

●●

●
●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●
●

●
●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●●●●●

●

●

●
●
●

●●

●
●

●

●

●

●

●●

●

●
●

●●

●●
●

●

●

●●●

●
●
●
●●
●●

●

●●●●●

●●

●●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●●

●
●
●
●●
●

●●

●

●

●●

●
●●●
●

●

●

●

●
●

●

●●
●
●

●

●

●

●
●

●●

●

●

●

●●
●

●

●
●

●
●●

●

●
●●

●

●●
●●

●

●

●●
●

●
●●●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●
●
●

●

●

●

●

●
●

●
●

●

●

●
●●
●

●
●
●

●

●
●
●●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●
●

●
●
●

●●
●

●
●
●●●

●

●
●

●
●

●
●

●

●

●
●●●

●

●
●
●

●●●

●
●●
●

●●●●●
●

●
●

●
●

●
●●
●●●●
●
●
●
●
●
●
●

●

●
●●
●●

●●
●●
●
●●

●
●

●●

●
●
●
●
●

●
●

●

●
●
●●●●
●

●

●

●

●

●●

●

●

●
●
●●

●
●
●

●

●●●

●
●
●
●

●●

●

●

●

●●
●

●●

●●●
●
●

●
●
●

●●
●
●

●

●

●

●

●●●
●●●

●●
●
●●●

●
●

●

●
●●
●

●
●
●●
●

●
●●

●●
●

●

●●

●

●

●

●
●

●
●●

●

●

●

●

●
●●
●

●
●●●

●

●●●

●●

●●
●●●●●●

●

●

●

●

●
●●●
●
●●●
●
●●●
●
●●

●

●

●
●

−5

0

5

10

−1.0 −0.5 0.0 0.5 1.0

residual

Figure 2: Sampling patterns for different importance measures for the model Y = 5X + 1 + ε. Red
and light blue respectively indicate high and low inclusion probability. Leverage focuses on the
extremes of the regression design. It and the gradient ignore large residuals near the center. The
influence picks an appropriate balance of residual and regression design effects.

3.2 Influence on predictions

The notion of influence can be extended beyond estimators for parameters. For example, points
can be sampled according to their influence on predictions rather than on the coefficients, which is
useful when exact coefficient values are unimportant as long as predictive performance is good. The
influence on predictions has also been used in other contexts such as in the interpretability of machine
learning models [17].

The influence on the prediction is easily derived from the influence on the coefficients. When each
prediction ŷi(θ) is a twice differentiable function of the k-dimensional parameter θ, then, with a
slight abuse of notation, the influence on the vector of predictions can be easily computed by the
chain rule

ψ(pred)
θ (xi, yi) = ŷ′(θ)

dθ

dδ(xi,yi)
= ŷ′(θ)ψθ(xi, yi). (9)

Here ŷ′(θ) is the n× k matrix of gradients∇ŷi(θ). In the context of linear least squares regression,
the influence is ψ(pred)

θ (xi, yi) = X(XTX)−1xi(yi − ŷi) = riHi· where ri is the residual of the
ith prediction and Hi· is the ith row of the hat matrix. Since the hat matrix H is idempotent and
symmetric, the squared norm ‖Hi·‖2 = eTi H

THei = eTi Hei = Hii. The prediction influence
weight can thus be more succinctly written as w(pred)

i = |ri|
√
Hii.

The prediction on the influence provides a strong connection to leverage-based sampling. In the
classical statistical setting where the experimenter does not have knowledge of the response Yi
while setting the regression design X , a sensible measure of influence takes the expectation over the
unknown Yi. In this case, one obtains a sampling weight proportional to the root leverage

√
Hii. If

only the influence on the single prediction ŷi is considered, then leverage score based sampling is
recovered. The influence is ψ(pred,i)

Pθ
(xi, yi) = xi(X

TX)−1xi(yi− ŷi) = riHii. Taking the norm and
the expectation over an unknown Yi exactly recovers leverage score sampling. Thus, leverage-based
sampling throws away two pieces of available information, the effect of the regression design on
points other than the ith point and more importantly, the information about the response Yi.

The surprising result that root leverage can yield a better sampling weight than leverage is borne out
in simulations. Fig. 1 shows that root leverage weights yield lower predictive loss than leverage based
weights when the model is correctly specified. However, we find the empirical results less clear in the
case of real data with misspecified models. In this case, leverage scores can be correlated with the
size of the residuals, and leverage sometimes performs better than root leverage.

3.3 Generalized Linear Model

GLMs can be solved via iteratively reweighted least squares. The solution is given by θ̂ =

(XTWX)−1XTWY where W is the diagonal matrix with Wii = 1/Varθ̂(Yi|x
T
i θ̂), the inverse

predicted variance at xi if θ̂ is equal to the true parameters. It is easy to verify that the influence
functions for θ̂ and ŷ under correct model specification are given by

ψθ(xi, yi) = (yi − ŷi)
(
XTWX

)−1
xi, ψ(pred)

θ (xi, yi) = riH
T
i· . (10)

5

where ri = yi − ŷi is the residual and H = X(XTWX)−1XTW so that θ̂ = HY . Unlike linear
least squares regression, the matrix H is non-symmetric so the norm of the influence function cannot
be expressed exactly in terms of the diagonal of the hat matrix.

For the special case of logistic regression, local case-control sampling provides a sampling method
that has both good empirical and theoretical properties. It chooses sampling probabilities proportional
to the “surprise” yi(1− p̂i) + (1− yi)p̂i so that a point is likely to be sampled only if it did not match
the prediction. The surprise can also be expressed as the absolute value of the residual |yi− p̂i|. Thus,
local case-control sampling is equivalent to influence-based sampling under the approximation that
there is no effect due to the regression design.

3.4 Quantile regression

While linear least squares regression focuses on estimating the conditional mean, in some cases the
quantity of interest is not the mean but the median or other quantiles of a distribution. Quantile
regression [16] provides another useful generalization of linear models. It is of particular interest
here since the objective is non-differentiable but still has an influence function.

For quantile regression, the loss function is the non-differentiable “check” function

`τ (x) = (1− τ)x1(x < 0) + τx1(x ≥ 0)

rather than the squared residual. When the desired quantile is τ and the true conditional quantile is
linear, the influence function is given by

ψθ(xi, yi) = [τ(1− τ)]−1V −1x ρ(yi − xTi θ)

where ρ is a subgradient of the loss, ρ(z) = 1− τ if z < 0 and τ if z > 0, and

V =

∫
xxT f(0|x)dG(x)

when the Xi are randomly drawn from a distribution Xi ∼ G and the error Yi − xTi θ has density
f(·|xi). In the commonly considered special case where the error distribution is independent of
the predictors X , Σ = 1

nX
TX is a consistent estimator of V . This gives the following estimated

influence functions on the coefficients and predictions

ψ̂θ(xi, yi) = [τ(1− τ)]
−1
ρ(ri)Σ

−1xi, ψ̂
(pred)
θ (xi, yi) = [τ(1− τ)]

−1
ρ(ri)H·i. (11)

We note that this influence function has the same form as the influence function for linear regression
in (8). The residual ri in the influence function for linear regression is simply replaced by ρ(ri) in
the quantile influence function. We will refer to ρ(ri) as the "residual" for quantile regression.

4 Implementation

To implement our method practically, we must address three main issues: the fact that the influence
function depends on the unknown true parameter θ; the problem that very small sampling probabilities
can lead to high variance; and the computational expense of exactly computing the influence function.

Influence function estimation: In all the examples, the exact influence function depends on the true
parameter θ. A simple solution is to substitute a pilot estimate θ0 for the true parameter. In some
cases, the pilot estimate may be readily available or easily obtained, such as applications in which
estimated parameters from one day may be used as a warm-start for training on the next day. If there
is no pre-existing pilot estimate, then one can first draw a uniform sample, or even a reasonable
convenience sample, from the data to form a pilot that can be used on the remaining data. Theorem 2
shows that simple consistency of the pilot is sufficient to ensure asymptotically optimal estimation of
regularized sampling probabilities. It does not need to improve at a rate dependent on the number of
points n.

Regularization of probabilities: It is typical for some estimated influences to be very close to 0.
For example, any point that lies on a pilot estimate’s regression line has zero influence. Since each
sampled point is weighted by its inverse sampling probability, these points have very large weight
when selected.

6

Our solution is to regularize by setting a minimum sampling probability α. This corresponds to adding
the convex constraint that α ≤ πi ≤ 1 to the optimization in section 2.2. The resulting sampling
probabilities are πi = max{α,min{1, λ‖ψθ0(xi)‖}} for λ such that

∑
i πi = nsub. In other words,

the probabilities not equal to α or 1 are drawn with probability proportional to ‖ψθ0(xi)‖.
Influence function computation: For many estimators, computing the influence function requires
a matrix pseudo-inverse for some matrix Σ or computing a leverage score. These may be costly
to compute. Approximate leverage scores may be computed [10] using fast Johnson-Lindestrauss
transforms. For matrix inverse approximations, a standard strategy [3, 2] is to replace Σ with its
diagonal, which amounts to using the Jacobi preconditioner in place of Σ and ignoring covariance.

We apply a slightly more complex approximation and estimate Σ = XTWX with a diagonal and a
low rank component so that Σ = S1/2(I −V DV T)S1/2 where V has low rank r and S is a diagonal
scaling matrix. This can be approximately computed using a truncated SVD of QXW 1/2 where Q is
an nsub× d sampling matrix or a fast Johnson-Lindestrauss transform. Since the inverse is of interest,
the truncated SVD should compute the smallest rather than largest singular values of XW 1/2. This
can be done in O(nsubdk) time where k is the dimension of the data. Computing Σ−1XT takes
O(ndk) time.

5 Error analysis

Our main theoretical result is the optimality of influence based sampling weights and derivation of its
asymptotic variance. To do this, we first define the class of limit importance sampling distributions
in terms of Radon-Nikodym derivatives and establish the conditions under which the asymptotic
variance for an importance sampling distribution can be derived.

Theorem 1 maps each limit importance sampling distribution to an asymptotic variance. It further
shows there is a unique importance sampling distribution that minimizes this asymptotic variance.
Our main result, Theorem 2, states that a consistent estimate of the influence function is sufficient to
attain this minimum asymptotic variance. The proofs are provided in the supplementary material.

Let φ(·) be some real-valued function on distributions in some P-Donsker class F . Suppose it is
Hadamard differentiable at Pθ under the uniform norm with influence function ψθ ∈ `∞(F). Assume
values Xi are drawn i.i.d. from Pθ. Consider the set of measures Q that are mutually absolutely
continuous with respect to Pθ with α ≤ dQ/dP ≤ 1 almost everywhere and the total measure of Q
is some constant c. Let P̂Qn = n−1

∑n
i=1 Zi

dP
dQ (Xi)δXi be the resulting estimated empirical measure

where Zi indicates Xi is in the subsample and equals 1 with probability dQ
dP . These statements are

easy to understand when P,Q have densities p, q respectively. In this case, the Radon-Nikodym
derivative dQ/dP = q/p exists almost everywhere. The subsampling procedure changes the measure
from the natural sampling distribution P to the subsample’s distribution which is proportional to Q.
The weights p

q are the familiar importance sampling weights to evaluate an integral over P given a
sample from Q.

Theorem 1. For any Q that satisfies the assumptions,
√

n
c (φ(P̂Qn) − φ(P)) N (0, V Q) where

V Q =
∫
ψ(x)ψ(x)T

(
dP
dQ

)2
dQ(x). Furthermore, there is a unique measure Qopt which minimizes

Tr(V Q).

Theorem 2. Suppose the pilot estimate of the influence function is consistent so that ψ̃θ = ψθ0 +op(1)
under the uniform norm. Let π̂n be estimated regularized inclusion probabilities for a sample of
expected size nsub based on PPS sampling with size measure equal to the norm of the estimated
influence function. As nsub, n → ∞ with nsub/n → c > 0, the plug-in estimator φ(P̂π̂nn)
N (0, V Qopt).

We note this tight optimality result is the only one we are aware of as other methods only provide
probabilistic bounds or rate guarantees save for the recent work in [27] specifically for logistic
regression. Furthermore, probabilistic guarantees are immediately obtained as confidence intervals
from our limit result, and these guarantees are tight.

Our optimality result is obtained assuming correct specification of the influence. Other methods may
make fewer assumptions but at the cost of an optimality guarantee. These assumptions are often

7

●

●

●

●

0.0

0.1

0.2

2000 4000 6000

expectedSize

||β̂
−β

||2
 ||

β|
|2

MSE of coefficients (CASP)

●

●

●

●

0.1

1.0

2000 4000 6000

expectedSize

E
xc

es
s

M
S

E

Excess MSE of predictions

● gradient

leverage

uniform

prediction influence exact

exact influence

prediction influence

influence

●

●

●
●

0

10

20

2000 4000 6000

expectedSize

||β̂
−β

||2
 ||

β|
|2

MSE of coefficients (NEWS)

●

●

●

●

1e+06

1e+08

2000 4000 6000

expectedSize

E
xc

es
s

M
S

E

Excess MSE of predictions

● gradient

leverage

uniform

prediction influence exact

exact influence

prediction influence

influence

Figure 3: Results for linear regression on the CASP (left) and NEWS (right) data. Influence-based
methods (colored) are top performers on CASP, requiring 1

3 to 1
2 the size of uniform sampling for

the same error. As expected, the parameter influence sampling outperformed prediction influence
sampling for parameter estimation and vice versa for prediction.

already made by the downstream model and, in some cases, are weak. For example, the squared
error loss induces the same influence regardless of the underlying distribution. However, for quantile
regression, the influence may depend on assumptions about how the error distribution changes with
respect to the covariates X . This misspecification only affects the optimality and not correctness of
the procedure. Even with a misspecified influence, an importance weighted subsample will still yield
an unbiased estimate of the objective.

6 Experiments

We compared our sampling procedures with existing methods on three real datasets for least squares
and quantile regression models. We did not include median L1 regression because it yields sampling
with probability proportional to leverage which we did not consider to be an interesting comparison.
Quantile regression, on the other hand, has a number of unique and applications beyond what can be
found with a robust version of least squares: for instance, quality of service guarantees, understanding
high-value donors for a nonprofit, or other cases where large values are of most interest.

The datasets we used are the CASP [18] (n = 45730, d = 9) and Online News Popularity (n = 38644,
d = 59) datasets from the UCI repository, which are the same as those used by [29], and the EPA
Risk-screening Environmental Indicators dataset [12] (n ≈ 9.6M,d = 10), a much larger regression
dataset. For the Online News Popularity dataset, we removed 4 columns due to collinearity. For the
EPA dataset, we used log(1 + Score) as the response. We expanded the 2 geographic coordinates
into 10× 10 cubic tensor b-splines and added log transformed predictors while removing the other
Score variables. This yielded a total of 111 regressors. In each case, we use a uniform random
sample with size equal to the size of the smallest subsample considered to derive a pilot estimate and
drew a weighted subsample from the remainder.

The quality of the fit on a subsample is measured either by either the relative squared error in the
coefficients ‖θ̂ − θopt‖2/‖θopt‖2 or by the mean excess loss E `(yi, ŷi)− E `(yi, ŷ

(opt)
i).

We performed experiments on both approximate influence and leverage scores as well as their
exact counterparts. For the approximate methods, we use a Fast Walsh-Hadamard Transform to
project n rows to 104 and compute the appropriate SVD or truncated SVD. We also consider two
approximations to the influence: the diagonal approximation for the second moment matrix and the
equal leverage approximation or, equivalently, the residual weighted approximation.

As shown in Figs. 3 and 4, our experiments demonstrate that influence based sampling outperforms all
the other procedures. The improved performance depends both on the the design Xsub and residuals
(Fig. 1). When accounting for correlation in the design is costly simple approximations for the
influence still yield significant improvements over uniform sampling (see supplementary materials).

Note that while we did not compare run times for these experiments, our technique should take the
same time as leverage-based sampling, excluding time used to generate a pilot, as the only additional
cost is computing residuals using the fixed pilot.

8

●

●

●

●

0.0

0.1

0.2

0.3

2000 4000 6000

expectedSize

||β̂
−

β|
|2

 ||
β|

|2

design
● leverage

uniform

influence

prediction influence

MSE of coefficients (0.9 quantile)

●

●

●

●

0.01

0.10

2000 4000 6000

expectedSize

E
xc

e
ss

 M
S

E

design
● leverage

uniform

influence

prediction influence

Excess MSE of predictions

●

●

●

●

1

10

100

2500 5000 7500 10000 12500

expectedSize

||β̂
−β

||2
 ||β

||2

MSE of coefficients (RSEI)

● ● ●
●1e+00

1e+04

1e+08

2500 5000 7500 10000 12500

expectedSize

Ex
ce

ss
 M

SE

Excess MSE of predictions

● uniform

gradient

leverage

influence

prediction influence

influence diag approx

Figure 4: Results for a 90%-quantile regression model on the CASP data set (left) and linear regression
on the large RSEI data set (right) also show approximate influence based sampling dominating other
methods. Approximate leverage score sampling was slightly worse than uniform sampling on CASP
and much worse on RSEI.

7 Discussion

One strength of sampling is the ability to reuse samples in a variety of problems. Since the samples
are independent samples with known inclusion probabilities, they can be used in any procedure
that takes importance weights. Multi-objective sampling [6] provides ways to sample for multiple
objectives and generate a sample that is certifiably good across multiple tasks.

One particularly useful scenario for sampling is the case when a single machine can store and process
the subsample. However, generating the sample required all the importance weights to first be
computed and then iteratively normalized and regularized. To generate a sample on the fly, the
adaptive threshold sampling technique in [25] can be used to both generate a fixed size, without
replacement sample while ensuring a minimum sampling probability is satisfied.

Another consequence of work is that a reasonably good sample can be drawn as a side-effect of a
stochastic gradient descent (SGD) procedure. A first-order SGD with no rescaling of the updates
would generate gradient-based sampling weights, obviating the need for a special pilot with almost
no additional cost. Computing just the residual as part of the SGD procedure or applying a diagonal
approximation to the Hessian [3] would yield other natural approximations. In the case of a distributed
SGD, the individual samples can be combined by a further round of subsampling to satisfy a storage
constraint. If points are duplicated across machines, coordinated sampling [7] can be used to combine
the samples.

We note that the regularization of probabilities is necessary to address inaccuracies from noisy pilot
estimates, but the exact relationship is unknown. As such, we think theoretical analysis of the pilot
and regularization would be interesting follow-on work.

8 Conclusion

We demonstrate both theoretically and empirically that influence functions yield good and principled
subsampling procedures, achieving the best possible asymptotic variance over all independent,
without replacement sampling designs with the same size and regularization. Our approach is also
highly general as it applies to a wide range of statistical and machine learning models. Furthermore,
it provides insight into the problem of optimal subsampling, allowing one to recast it as optimal
sampling for a mean and decomposing the contributions of the regression design and response. This
allows other existing work, such as on multi-objective sampling, to generate variations of this basic
method that can address a wider range of scenarios. It further allows us to show several methods,
including leverage score sampling, can be seen as approximations to our method. We also address
computational difficulties with influence based methods and show fast approximations perform well.

References
[1] O. Bachem, M. Lucic, and A. Krause. Practical coreset constructions for machine learning. arXiv preprint

arXiv:1703.06476, 2017.

9

[2] A. Bordes, L. Bottou, and P. Gallinari. SGD-QN: Careful quasi-Newton stochastic gradient descent.
Journal of Machine Learning Research, 10:1737–1754, 2009.

[3] L. Bottou. Large-scale machine learning with stochastic gradient descent. In COMPSTAT. 2010.

[4] K. Clarkson, P. Drineas, M. Magdon-Ismail, M. Mahoney, X. Meng, and D. Woodruff. The fast Cauchy
transform and faster robust linear regression. SIAM Journal on Computing, 45(3):763–810, 2016.

[5] K. L. Clarkson. Subgradient and sampling algorithms for `1 regression. In SODA, 2005.

[6] E. Cohen. Multi-objective weighted sampling. In HotWeb, 2015.

[7] E. Cohen and H. Kaplan. What you can do with coordinated samples. In RANDOM, 2013.

[8] A. Dasgupta, P. Drineas, B. Harb, R. Kumar, and M. Mahoney. Sampling algorithms and coresets for `p
regression. SIAM Journal on Computing, 38(5):2060–2078, 2009.

[9] P. Dhillon, Y. Lu, D. Foster, and L. Ungar. New subsampling algorithms for fast least squares regression.
In NIPS, 2013.

[10] P. Drineas, M. Magdon-Ismail, M. Mahoney, and D. Woodruff. Fast approximation of matrix coherence
and statistical leverage. Journal of Machine Learning Research, 13:3475–3506, 2012.

[11] W. DuMouchel, C. Volinsky, T. Johnson, C. Cortes, and D. Pregibon. Squashing flat files flatter. In KDD,
1999.

[12] U.S. EPA. U.S. EPA risk-screening environmental indicators (RSEI) chemical weights, 2015.

[13] W. Fithian and T. Hastie. Local case-control sampling: Efficient subsampling in imbalanced data sets.
Annals of Statistics, 42(5):1693, 2014.

[14] Frank R Hampel. The influence curve and its role in robust estimation. Journal of the american statistical
association, 69(346):383–393, 1974.

[15] J. Huggins, T. Campbell, and T. Broderick. Coresets for scalable Bayesian logistic regression. In NIPS,
2016.

[16] R. Koenker. Quantile Regression. Cambridge university press, 2005.

[17] P. W. Koh and P. Liang. Understanding black-box predictions via influence functions. In ICML, 2017.

[18] M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml.

[19] P. Ma, M. Mahoney, and B. Yu. A statistical perspective on algorithmic leveraging. Journal of Machine
Learning Research, 16:861–911, 2015.

[20] D. Madigan, N. Raghavan, W. Dumouchel, M. Nason, C. Posse, and G. Ridgeway. Likelihood-based data
squashing: A modeling approach to instance construction. Data Mining and Knowledge Discovery, 6(2):
173–190, 2002.

[21] X. Meng and M. Mahoney. Low-distortion subspace embeddings in input-sparsity time and applications to
robust linear regression. In STOC, 2013.

[22] X. Meng, M. Saunders, and M. Mahoney. LSRN: A parallel iterative solver for strongly over-or underde-
termined systems. SIAM Journal on Scientific Computing, 36(2):C95–C118, 2014.

[23] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, W. Paul, M. I. Jordan, and I. Stoica.
Ray: A distributed framework for emerging ai applications. arXiv preprint arXiv:1712.05889, 2017.

[24] Garvesh Raskutti and Michael W Mahoney. A statistical perspective on randomized sketching for ordinary
least-squares. The Journal of Machine Learning Research, 17(1):7508–7538, 2016.

[25] D. Ting. Adaptive threshold sampling and estimation. arXiv preprint arXiv:1708.04970, 2017.

[26] A.W. van der Vaart. Asymptotic Statistics. Cambridge University Press, 2000.

[27] HaiYing Wang, Rong Zhu, and Ping Ma. Optimal subsampling for large sample logistic regression. Journal
of the American Statistical Association, 113(522):829–844, 2018.

[28] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and I. Stoica. Spark: Cluster computing with working
sets. In HotCloud, 2010.

[29] R. Zhu. Gradient-based sampling: An adaptive importance sampling for least-squares. In NIPS, 2016.

10

http://archive.ics.uci.edu/ml

