NIPS Proceedingsβ

Near-Optimal Policies for Dynamic Multinomial Logit Assortment Selection Models

Part of: Advances in Neural Information Processing Systems 31 (NIPS 2018)

[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Poster


In this paper we consider the dynamic assortment selection problem under an uncapacitated multinomial-logit (MNL) model. By carefully analyzing a revenue potential function, we show that a trisection based algorithm achieves an item-independent regret bound of O(sqrt(T log log T), which matches information theoretical lower bounds up to iterated logarithmic terms. Our proof technique draws tools from the unimodal/convex bandit literature as well as adaptive confidence parameters in minimax multi-armed bandit problems.