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Abstract

How to leverage the temporal dimension is one major question in video analysis.
Recent works [47, 36] suggest an efficient approach to video feature learning,
i.e., factorizing 3D convolutions into separate components respectively for spatial
and temporal convolutions. The temporal convolution, however, comes with an
implicit assumption – the feature maps across time steps are well aligned so that
the features at the same locations can be aggregated. This assumption can be
overly strong in practical applications, especially in action recognition where the
motion serves as a crucial cue. In this work, we propose a new CNN architecture
TrajectoryNet, which incorporates trajectory convolution, a new operation for
integrating features along the temporal dimension, to replace the existing temporal
convolution. This operation explicitly takes into account the changes in contents
caused by deformation or motion, allowing the visual features to be aggregated
along the the motion paths, trajectories. On two large-scale action recognition
datasets, Something-Something V1 and Kinetics, the proposed network architecture
achieves notable improvement over strong baselines.

1 Introduction

The past decade has witnessed significant progress in action recognition [37, 38, 29, 42, 1], especially
due to the advances in deep learning. Deep learning based methods for action recognition mostly
fall into two categories, two-stream architectures [29] with 2D convolutional networks and 3D
convolutional networks [34]. Particularly, the latter has demonstrated great potential on large-scale
video datasets [19, 25], with the use of new training strategies like transferring weights from pretrained
2D CNNs [42, 1].

However, for 3D convolution, several key questions remain to be answered: (1) 3D convolution
involves substantially increased computing cost. Is it really necessary? (2) 3D convolution treats the
spatial and temporal dimensions uniformly. Is it the most effective way for video modeling? We are
not the first to raise such questions. In recent works, there have been attempts to move beyond 3D
convolution and further improve the efficiency and effectiveness of joint spatio-temporal analysis. For
instance, both Separable-3D (S3D) [47] and R(2+1)D [36] obtain superior performance by factorizing
the 3D convolutional filter into separate spatial and temporal operations. However, both methods
are based on an implicit assumption that the feature maps across frames are well aligned so that the
features at the same locations (across consecutive frames) can be aggregated via temporal convolution.
This assumption ignores the motion of people or objects, a key aspect in video analysis.
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Figure 1: Illustration of our trajectory convolution. Given a sequence of video frames (left) and its
corresponding input feature map of size C × T ×H ×W (bottom-middle; the dimension of channels C is
simplified as one for clarity), in order to calculate the response of a specific point at time step t, we leverage the
motion fields←−ω and −→ω (top-middle; the arrows in blue denote the motion velocity) to determine the sampling
location at neighboring time step t− 1 and t+ 1 in the sense of tracking along the motion path. The response is
denoted on the output feature map (bottom-right). The operation of trajectory convolution (denoted in a red
box) is illustrated on the top-right. This figure is best viewed in color.

A natural idea to address this issue is to track the objects of interest and extract the features along
their motion paths, i.e., trajectories. This idea has been explored in previous works [33, 37, 38, 41].
The most recent work along this direction is the Trajectory-pooled Deep-convolutional Descriptor
(TDD) [41], which aggregates off-the-shelf deep features along trajectories. However, in this method,
the visual features are derived separately from an existing deep network, just as a replacement of
hand-crafted features. Hence, a question emerges: can we learn better video features in conjunction
with feature tracking?

In pursuit of this question, we develop a new CNN architecture for learning video features, called
TrajectoryNet. Inspired by the Separable-3D network [36, 47], our design involves a cascade of
convolutional operations respectively along the spatial and temporal dimensions. A distinguishing
feature of this architecture is that it introduces a new operation, namely the trajectory convolution, to
take the place of the standard temporal convolution. As shown in Figure 1, the trajectory convolution
operates along the trajectories that trace the pixels corresponding to the same physical points, rather
than at fixed pixel locations. The trajectories can be derived from either a precomputed optical flow
field or a dense flow prediction network trained jointly with the features. The standard temporal
convolution can be seen as a special case of the trajectory convolution where all pixels are considered
to be stationary over time.

Experimental results on Something-Something V1 and Kinetics datasets show that by explicitly
taking into account the motion dynamics in the temporal operation, the proposed network obtains
considerable improvements over the Separable-3D, a competitive baseline.

2 Related Work

Trajectory-based Methods for Action Recognition Action recognition in videos has been greatly
advanced thanks to the up-springing of powerful features. It was firstly tackled by extracting
spatial-temporal local descriptors [39] from space-time interest points [20, 46]. These successful
local features include: Histogram of Oriented Gradients (HOG) [3], Histogram of Optical Flow
(HOF) [21], and Motion Boundary Histogram (MBH) [4].
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Over the years, it was recognized that the 2D space domain and 1D time domain have different
characteristics and should be handled in a different manner intuitively. As of the motion modeling
in the temporal domain, trajectories have been a powerful intermediary to convey such motion
information. Messing et al [24] used a KLT tracker [22] to extract feature trajectories and applied
log-polar uniform quantization. Sun et al [33] extracted trajectories by matching SIFT feature
between frames. These trajectories are based on sparse interest points, which have been later proved
to be inferior to dense sampling. In [37], Wang et al used dense trajectories to extract low-level
features within aligned 3D volumes. An improved version [38] increased recognition accuracy by
estimating and compensating the effect of camera motion. [37, 38] also revealed that trajectory itself
can serve as a component of descriptors in the form of concatenated displacement vectors, which was
consolidated by deep learning methods [29].

Wang et al first proposed TDD in [41] to introduce deep features to trajectory analysis. It conducts
trajectory-constrained pooling to aggregate deep features into video descriptors. However, the
backbone two-stream CNN [29], from which the deep feature is extracted, is learned from very short
frame snippets and is unaware of the information of temporal evolution. In addition, all of these
trajectory-aligned methods rely on encoding methods such as Fisher vectors (FV) [45] and vectors of
locally aggregated descriptors (VLAD) [14] and an extra SVM is needed for classification, which
prohibits end-to-end training. To sum up the discussion above, we provide a comparison of our
approach with previous works on action recognition in Table 1.

Table 1: A comparison of our approach with existing methods.

Method Use deep feature? Feature tracking? End-to-end?
STIP [20] 7 7 7

DT [37], iDT [38] 7 3 7
TSN [42], I3D [1] 3 7 3

TDD [41] 3 3 7
TrajectoryNet (Ours) 3 3 3

Action Recognition in the Context of Deep Learning Deep convolutional neural networks based
models have been widely applied to action recognition [18, 29, 34], which can be mostly categorized
into two families, i.e. two-stream networks [29] and 3D convolution networks [15, 34]. Recently, 3D
convolutonal network has drawn attention since Carreira et al introduced Inflated-3D models [1] by
inflating an existing 2D convolutional network to its 3D variant and training on a very large action
recognition dataset [19]. Tran et al argued in [36] that factorizing 3D convolutions into separable
spatial and temporal convolutions obtains higher accuracy. Similar phenomenon is also observed
in Separable-3D models by Xie et al [47]. Wang et al incorporated multiplicative interaction into
3D convolution for modeling relation in [40]. All of these modifications are focused on the single
modality, i.e. the appearance branch.

Apart from network architectural designs, another direction is to exploit the interaction of appearance
and motion information of action. Feichtenhofer et al explored the strategies of spatio-temporal
fusion of two-stream networks at earlier stages in [7]. Such attempts are mostly simple manipulation
of feature such as stacking, addition [7], and multiplicative gating [6].
Motion Representation using Convolutional Networks Optical flow has been used as a generic
representation of motion as well as trajectory in particular for decades. As a competitive counterpart
to the classical variational approaches [10, 31], many parametric models based on CNN have been
recently proposed and achieved promising results in estimating optical flow. These include, but are
not limited to, the FlowNet family [5, 11], SpyNet [26], and PWC-Net [32]. The aforementioned
models are learned in a supervised manner on large-scale simulated flow datasets [5, 23], possibly
leaving a large gap between simulated animations and real-world videos. Also, these datasets are
designed for accurate flow prediction, which is possibly not appropriate for motion estimation of
human action due to inhomogeneity of displacement across optical flow dataset and human action
dataset, as revealed in [11]. As of the network architecture, most models require parameters in the
magnitude of 107 ∼ 108, which both prohibits being plugged into action recognition networks as a
submodule and causes too much computational cost. Zhu et al proposed MotionNet [51] to learn
dense flow fields in an unsupervised manner and plugged it into a two-stream network [29] to be
finetuned for action recognition task. The MotionNet is relatively light-weighted and can accept
a sequence of multiple images. However, this is only used to substitute the pre-calculated optical
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flow while maintaining the conventional two-stream architecture. Zhao et al proposed an alternative
representation based on cost volume for efficiency at the cost of degraded quality of motion field [49].
Transformation-Sensitive Convolutional Networks Conventional CNN operates on fixed loca-
tions in a regular grid, which limits its ability to modeling unknown geometric transformations.
Spatial Transform Networks (STN) [13] is the first to introduce spatial transformation learning into
deep models. It estimates a global parametric transformation on which the ordinary feature map
is warped. Such warping is computationally expensive and the transformation is considered to be
universal across the whole image, which is usually not the case for action recognition, since different
body parts have their own movement. In Dynamic Filter Networks [16], Xu et al introduce dynamic
filters which are conditioned on the input and can change over samples. This enables learning
local spatial transformations. Deformable Convolutional Network (DCN) [2] achieves similar local
transformation in a different way. While maintaining filter weights invariant to the input, the proposed
deformable convolution first learns a dense offset map from the input, and then applies it to the regular
feature map for re-sampling. The proposed trajectory convolution is inspired by the deformable
sampling in DCN and utilizes it for feature tracking in the spatiotemporal convolution operations.

3 Methods

The TrajectoryNet model is built with the trajectory convolution operation. In this section, we first
introduce the concept of trajectory convolution. Then we illustrate the architecture of TrajectoryNet.
Finally we describe the approach to learning the trajectory together with the trajectory convolution.

3.1 Trajectory Convolution

In the context of separable spatial temporal 3D convolution, the 1D temporal convolution is conducted
pixel-wise on the 2D spatial feature map along the temporal dimension. Given input feature maps
xt(p) at the t-th time step, the output feature yt(p), at position p = (h,w) ∈ [0, H) × [0,W ), is
calculated by the inner product of input feature sequences at same spatial position across neighboring
frames and the 1D convolution kernels.

By revisiting the idea of trajectory modeling in the action recognition literature, we introduce the
concept of trajectory convolution. In trajectory convolution, the convolutional operation is done across
irregular grids such that the sampled positions at different times correspond to the same physical
point of a moving object. Formally, parameterized by the filter weight {wτ : τ ∈ [−∆t,∆t]} with
kernel size (2∆t+ 1), the output feature yt(p) is calculated as

yt(p) =

∆t∑
τ=−∆t

wτxt+τ (p̃t+τ ). (1)

Following the formulation of trajectory in [37], the point pt at frame t can be tracked to position p̃t+1

at next frame (t+1) in the presence of a forward dense optical flow field−→ω = (ut, vt) = F(It, It+1)
using the following equation

p̃t+1 = (ht+1, wt+1) = pt +−→ω (pt) = (ht, wt) +−→ω |(ht,wt). (2)

For τ > 1, the sample position p̃t+τ can be calculated by applying Eq. (2) iteratively. To track to
the previous frame (t− 1), a backward dense optical flow field←−ω = (ut, vt) = F(It, It−1) is used
likewise.

Since the optical flow field is typically real-valued, the sampling position p̃t+τ becomes fractional.
Therefore, the corresponding feature x(p̃t+τ ) is derived via interpolation with a specific sampling
kernel G, written as

x(p̃t+τ ) =
∑
p′

G(p′, p̃t+τ ) · x(p′). (3)

In this paper, we will not go deeper into the usage of different choices of sampling kernels G and use
the bilinear interpolation as default.
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3.2 Relation with Deformable Convolution

The original deformable convolution is introduced for 2D convolution. But it is natural to extend it
to the 3D scenarios. A spatio-temporal gridR ∈ R3 can be defined by an ordinary 3D convolution
specified by a certain receptive field size and dilation. For each location q0 ∈ (t, h, w) on the output
feature map y, the response is calculated by sampling on irregular locations offset by ∆qn.

y(q0) =
∑

qn∈R
w(qn) · x(q0 + qn + ∆qn) (4)

The trajectory convolution can then be viewed as a special case of 3D deformable convolution
where the offset map is from the trajectories. Here, the gridR = {(−1, 0, 0), (0, 0, 0), (1, 0, 0)} is
defined by a 3 × 1 × 1 kernel with dilation 1. The temporal component of the offset is always 0,
i.e. ∆qn = (0,∆pn). The discussion above reveals the relationship with deformable convolution.
Therefore, the trajectory convolution can be efficiently implemented similar to the way discussed
in [2].

3.3 Combining Motion and Appearance Features

The trajectory convolution helps the network to aggregate appearance features along motion path,
alleviating the motion artifact by trajectory alignment. However, the motion information itself is
important for action recognition. Inspired by the trajectory descriptor proposed in [37], we describe
local motion patterns at each position p using the sequence of trajectory information in the form of
coordinates of sampling offsets {∆pτ : τ ∈ [−∆t,∆t]}. This is equivalent to stacking the offset
map for trajectory convolution and the original appearance feature map. The offset map is normalized
through Batch-Normalization [12] before concatenation. As a result, we achieve the combination of
appearance feature and motion information in terms of trajectory with minimal increase of network
parameters. Compared with the canonical two-stream approaches, which are based on late fusion of
two networks, our approach leads to a unified network architecture and is much more parameter and
computation efficient.

3.4 The TrajectoryNet Architecture

Based on the concept of trajectory convolution, we design a unified architecture that can align
appearance and motion features along the motion trajectories. We call it TrajectoryNet by integrating
trajectory convolution into the Separable-3D ResNet18 architecture [9, 36]. The 1D temporal
convolution component of a (2+1)D-convolutional block is replaced by a trajectory convolution
with down-sampled motion field, such as a pre-computed optical flow, in the middle level of the
network. The appearance feature map for trajectory convolution is optionally concatenated with the
down-sampled motion field to introduce extra motion information. Adding trajectory convolution
at higher levels is likely to provide less motion information since spatial resolution is reduced and
down-sampled optical flow may be inaccurate. Adding trajectory convolution at lower levels increases
the precision of motion estimation, but the receptive field for sampling position is limited.

3.5 Learning Trajectory

As discussed in the previous subsection, the trajectory convolution can be viewed as deformable
convolution with a special deformation map, that is the motion trajectory in the video. It is capable of
accumulating gradients from higher layers via back-propagation. Therefore, if the trajectory can be
estimated by a parametric model, we can learn the model parameters using back-propagation as well.
The most straight forward approach for this cause is applying a small 3D CNN to estimate trajectories
as an mimic of the 2D CNN used in the deformable convolution networks [2]. Preliminary experiments
show that this is not very effective. It can be observed that the offsets obtained simply by applying
a 3D convolutional layer over the same input feature map are highly correlated to the appearance.
On the contrary, the motion representation, which we use trajectory as a medium, has long been
considered to be invariant to appearance intuitively and empirically [17, 28]. Therefore, we cannot
naïvely adopt the way of learning offsets in [2]. This also reveals the difference between the original
deformable convolution for object detection and our trajectory convolution for action recognition:
The original deformable convolution attempts to learn deformation of spatial configuration within an
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single image while our trajectory convolution tries to model the variation of appearance deformation
across neighboring images, despite sharing the similar mathematical formulation.

To tackle such issue, we train another network to predict the trajectory individually as an alternative.
In particular, we use MotionNet [51] as the basis due to its lightweightness. It accepts a stack of
(M + 1) images as a 3(M + 1)-channel input and predicts a series of M motion field maps as a 2M -
channel output. Following a “downsample-upsample” design like FlowNet-SD [11], motion fields
with multiple spatial resolutions are predicted. The network is trained without external supervision
such as ground-truth optical flow. An unsupervised loss Lunsup [51] is designed to enforce pair-wise
reconstruction and similarity, with motion smoothness as a regularization.

Once pre-trained, the MotionNet can be plugged into the TrajectoryNet architecture to substitute
the input of pre-computed optical flow. We modify the original model in [51] to produce optical
flow map of the same resolution of feature maps where the trajectory convolution operates on. The
MotionNet can also be fine-tuned with the classification network. In this case, the loss for network
training is a weighted sum of the unsupervised loss Lunsup and the cross-entropy loss for classification
Lcls, written as L = γLunsup + Lcls.

4 Experiments

To evaluate the effectiveness of our TrajectoryNet, we conduct experiments on two benchmark
datasets for action recognition: Something-Something V1 [8] and Kinetics [19]. Visualization of
intermediate features for both appearance and trajectory is also provided.

4.1 Dataset descriptions

Something-Something V1 [8] is a large-scale crowd-sourced video dataset on human-object interac-
tion. It contains 108,499 video clips in 174 classes. The dataset is split into train, validation and test
subset in the ratio of around 8:1:1. The top-1 and top-5 accuracy is reported.

Kinetics [19] is a large-scale video dataset on human-centric activities sourced from YouTube. We
use the version released in 2017, covering 400 human action classes. Due to the inaccessibility
of some videos on YouTube, our version contains 240436, 19796 and 38685 clips in the training,
validation and test subset, respectively. The recognition performance is measured by the average of
top-1 and top-5 accuracy.

4.2 Experimental Setups

Network configuration We use the Separable-3D ResNet-18 [9] as the base model, if not specified.
Starting from the base ResNet-18 model, A 1-D temporal convolution module with temporal kernel
size of 3, followed by Batch Normalization [12] and ReLU non-linearity is inserted after every
2-D spatial convolution module. A dropout of 0.2 is used between the global pooling and the last
C-dimensional (C equals the total number of classes) fully-connected layer.

Generating trajectories As stated above, we study two methods to generate trajectories: one is
based on variational methods and the other is based on CNNs. For the former, we adopt the TV-L1
algorithm [48] which is implemented in OpenCV with CUDA. To match the size of input feature, two
types of pooling are used to down-sample the optical flow field: average pooling and max pooling.
For the latter, the MotionNet is trained by randomly sampling images pairs from UCF-101 [30]. The
training policy follows the practices in [51].

Training The network is trained with stochastic gradient descent with momentum set to 0.9. The
weights for 2D spatial convolution are initialized with the 2D ResNet pre-trained on ImageNet [27].
The length of each input clip is 16 and the sampling step varies from 1 to 2. For Something-Something
V1, the batch size is set to 64 while for Kinetics, the batch size is 128. On Kinetics, the network is
trained from an initial learning rate of 0.01 and is reduced by 1

10 every 40 epochs. The whole training
procedure takes 100 epochs. For Something-Something V1, the epoch number is halved because the
duration of its videos is shorter.

Testing At test time, we follow the common practice by sampling a fixed number of N snippets
(N = 7 for Something-Something V1 and N = 25 for Kinetics) with an equal temporal interval. By
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cropping and flipping four corners and the center of each frame within a snippet, 10 inputs are obtain
for each snippet. The final class scores are calculated by averaging the scores across all 10N inputs.

4.3 Ablation Studies

Trajectory convolution We first evaluate the effect of using trajectory convolution in the Separable-
3D ResNet architecture in Table 2. Consistent improvement of accuracy can be observed if trajectory
convolution is used. Then, we study the effect of incorporating trajectory in different locations.
Adding trajectory convolution increases the top-5 accuracy but the top-1 accuracy saturates. In the
remaining experiments, we use only 1 trajectory convolution at the res3b1.conv1 block, if not
specified.

Since we did not see remarkable gain, we conjecture that this is because the used trajectory is derived
from the optical flow down-sampled via average pooling. The optical flow is already smoothed
with TV-L1 and the extra average pooling degrades the quality more. To verify this, we preform
an additional experiment by replacing average pooling with max pooling. This alternative down-
sampling strategy preserves more details without degrading the trajectory. Furthermore, as will be
shown in Table 4, using trajectory learned from MotionNet leads to higher accuracy. This indicates
that the performance of TrajectoryNet highly depends on the quality of trajectory.

Table 2: Results of using trajectory convolution in different convolutional layers in the Separable-3D
ResNet-18 network. The accuracy is reported on the validation subset of Something-Something V1.

Usage of Traj. Conv. Down-sample Method Top-1 Acc. Top-5 Acc.
None None 34.30 65.66

res2b1.conv1 Avg. Pool 34.49 66.23
res3a.conv1 Avg. Pool 34.79 66.21

res3b1.conv1 Avg. Pool 34.96 66.24
res3b1.conv1,2 Avg. Pool 34.72 66.89
res3b1.conv1 Max Pool 36.04 67.72

Combining motion and appearance features We compare the results of incorporating motion
information into the trajectory convolution in Table 3. We can clearly see the improvement of
more than 1% after encoding a 4-dimensional feature map of trajectory coordinates. We compare
with several other methods, such as the early spatial fusion by concatenation with motion feature
map [7] and the late fusion used in the two-stream network [29]. Though there is still an apparent
gap between ours and the late-fusion strategy, our fusion strategy achieves notable increase with
negligible increase of parameters. And it also completely removes the computation for running a
motion-stream recognition network.

Table 3: Results of incorporating different sources of input into the trajectory convolution in the
Separable-3D ResNet-18 network. The ft. denotes the feature map. The accuracy is reported on the
validation subset of Something-Something V1.

Source Usage of Traj. Conv. # param. Top-1 Acc. Top-5 Acc.
appearance res3b1.conv1 15.2M 34.96 66.24

appearance + motion (ft.) res3b1.conv1 15.9M 35.24 67.22
appearance + trajectory (# dim=4) res3b1.conv1 15.2M 36.08 67.72

two-stream S3D (late fusion) None 30.4M 40.67 72.79

Learning trajectory Here we compare the learned trajectory against pre-computed optical flow
from TV-L1 [48]. We choose two architectures of MotionNet: one accepts one image pair and outputs
one motion field (denoted by MotionNet-(2)), and the other accepts 17 consecutive images and
produces 16 motion fields (denoted by MotionNet-(17)). We study three training policies: (1)
fixing the MotionNet once it is pre-trained; (2) fine-tuning the MotionNet with the classification cross-
entropy loss; and (3) fine-tuning the MotionNet with both the unsupervised loss and classification
loss. The loss weight γ is set to 0.01. The results are listed in Table 4. It turns out that the trajectories
learned by both MotionNet-(2) and MotionNet-(17) outperform those derived from TV-L1 [48]. It is
interesting to observe that jointly training MotionNet and TrajectoryNet will yield lower accuracies
than freezing MotionNet unless the unsupervised loss is introduced. We conjecture that the existence
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of Lunsup can help to maintain the quality of trajectories by enforcing the pair-wise consistency. The
necessity of multi-task fine-tuning may also explain the difficulty of using shallow convolutional
modules with random initialization to estimate the trajectory, which we have discussed in Sec 3.5.

Table 4: Results of learning trajectory. The settings are elaborated in the body part.

source of trajectory fine-tune weight unsup. loss Top-1 Acc. Top-5 Acc.
TV-L1 - - 34.96 66.24

MotionNet-(2) 7 7 36.37 67.74
MotionNet-(2) 3 7 34.72 65.59
MotionNet-(2) 3 3 36.91 68.47

MotionNet-(17) 7 7 35.69 66.82
MotionNet-(17) 3 7 35.25 66.65
MotionNet-(17) 3 3 36.69 68.52

Trajectories with step greater than one Here we evaluate the model which accepts an input of
16 frames but at a sampling step of 2. To be more specific, we collect a consecutive of 32 frames and
randomly sample one frame for every two neighboring frames. This enlarges the effective coverage
of the architecture, i.e. from 16 to 32, while keeping the computation the same. With the strategy of
learning trajectory mentioned above, the TrajectoryNet can still improve over the baseline. This also
reflects the flexibility of learnable trajectory, since pre-computed optical flow has to be re-run for the
whole training set under such circumstances.

Table 5: Results of using trajectories with step greater than one.

# of frame × step Effective coverage Usage of Trajectories Top-1 Acc. Top-5 Acc.
16 × 2 32 None 42.47 74.57
16 × 2 32 MotionNet-(17)-ft.-unsup. 43.32 74.85

Runtime Cost In Table 6, we report the runtime of the proposed TrajectoryNet with two settings:
(1) the one whose trajectories are from pre-computed TV-L1 (time not included) and (2) the one whose
trajectories are inferred from MotionNet-(17) (time included). Compared with its plain counterpart,
the TrajectortNet with pre-computed TV-L1 incurs less than 10% additional computation for the
operation of trajectory convolution. It takes TrajectoryNet with MotionNet-(17) an extra 0.137 second
for network forward compared to TrajectoryNet with TV-L1, which can be ascribed to the forward
time of the MotionNet plugged in.

Table 6: Runtime comparison of TrajectoryNet and the counterpart. The network is tested on a
workstation with Intel(R) Xeon(R) CPU (E5-2640 v3 @2.60GHz) and Nvidia Titan X GPU.

Method Net. forward (sec) ∆t (sec)
S3D 0.390 -

TrajectoryNet (TV-L1) 0.426 +0.036
TrajectoryNet (MotionNet-(17)) 0.563 +0.137

4.4 Comparison with State-of-the-Arts

We compare the performance of our TrajectoryNet with other state-of-the-art methods. The results on
Something-Something V1 [8] and Kinetics [19] are shown in Table 7 and Table 8 respectively. For
Something-Something V1, we use 16 frames with a step of 2 as input and apply MotionNet-(17) to
produce trajectory. Motion information encoded by trajectory is used optionally. On Table 7, we can
see that our TrajectoryNet achieves competitive results with state-of-the-art models including those
with deeper models or those pre-trained on larger models. After pre-training on Kinetics, the accuracy
is boosted to a new level. For Kinetics, a MotionNet-(2) is used. On Table 8, the TrajectoryNet
improves the Separable-3D baseline. With 16 input frames at a step of 2, it performs on par with
models with similar model complexity.

4.5 Visualization

We present a qualitative study by visualizing the intermediate feature of our TrajectoryNet in Figure 2.
Given a pair of two consecutive images on top of the first column, we first compare the feature map at
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Table 7: Comparison with state-of-the-art methods on the validation and test set of Something-
Something V1. The performance is measured by the Top-1 accuracy.

Method Backbone network Pre-train Val Top-1
3D-CNN [8] C3D Sports-1M 11.5

MultiScale TRN [50] BN-Inception ImageNet 34.4
ECO lite [52] BN-Inception + 3D-ResNet18 Kinetics 46.4

Non-local I3D + GCN [44] ResNet-50 Kinetics 46.1
TrajectoryNet-MotionNet-(17) w/o. motion ResNet-18 ImageNet 43.3
TrajectoryNet-MotionNet-(17) w/. motion ResNet-18 ImageNet 44.0
TrajectoryNet-MotionNet-(17) w/o. motion ResNet-18 Kinetics 47.8

Table 8: Comparison with state-of-the-art methods on the validation subset of Kinetics. The perfor-
mance is measured by the average of Top-1 and Top-5 accuracy.

Method Backbone network Pre-train Val. Avg. Acc.
TSN (RGB) [42] BN-Inception-v2 ImageNet 77.8
I3D (RGB) [1] BN-Inception-v1 ImageNet 81.2

Nonlocal-I3D (RGB) [43] ResNet-101 ImageNet 85.5
R(2+1)D (RGB) [36] ResNet-34 Sports-1M 82.6

C3D [35] ResNet-18 - 75.7
ARTNet w/. TSN [40] ResNet-18 - 80.0

Separable-3D (RGB, 16 × 1 frames) ResNet-18 ImageNet 76.9
TrajectoryNet-MotionNet-(2) (16 × 1 frames) ResNet-18 ImageNet 77.8
TrajectoryNet-MotionNet-(2) (16 × 2 frames) ResNet-18 ImageNet 79.8

the layer of res3b1.conv1, i.e. on which the trajectory convolution is applied, at the bottom of the
first column. We can observe a visible spatial shift between the two images’ high response regions,
which conforms to our assumption that feature map is not well aligned due to object movement. We
also demonstrate different types of trajectories that we use in the experiments, namely the TV-L1 [48]
optical flow and prediction from MotionNet before and after finetune on the second, third and fourth
column. We can see that the motion estimation by the original MotionNet is less smooth than TV-L1
especially in the background regions. For foreground objects, however, MotionNet does well and can
sometimes produce motion with more rigid shape, e.g. the hand on the left example of Figure 2. Also,
the joint training further improves the quality of trajectories.

TV-L1 MotionNet
w/o. unsup. ft.

MotionNet
w/. unsup. ft.

Image $%

Image $%)(

Feature Map ℱ($%)
@res3b.conv1

Feature Map ℱ($%)()
@res3b.conv1

(HSV color map)

(x-direction map)

(y-direction map)

TV-L1 MotionNet
w/o. unsup. ft.

MotionNet
w/. unsup. ft.

Image $%

Image $%)(

Feature Map ℱ($%)
@res3b.conv1

Feature Map ℱ($%)()
@res3b.conv1

(HSV color map)

(x-direction map)

(y-direction map)

Figure 2: Visualization of the intermediate feature of the TrajectoryNet. These two image pairs depict the
action of “moving something (a pen) down” and “trying but failing to attach something (a ball) to something (a
cat) because it doesn’t stick.” For each block, the first column show a pair of input images and their corresponding
feature map at the layer of res3b1.conv1; the second, third and fourth column show the optical flow field
generated by TV-L1 algorithm and learned by MotionNet before and after finetuning (The motion field encoded
in HSV color map as well as the components of x-axis and y-axis are shown from top to bottom). The figure is
best viewed in color.
5 Conclusion
In this paper, we propose a unified end-to-end architecture called TrajectoryNet for action recog-
nition. The approach is to incorporate the repeatedly proven idea of trajectory modeling into the
Separable-3D network by introducing a new operation named trajectory convolution. The Trajec-
toryNet further combines appearance and motion information in a unified model architecture. The
proposed architecture achieves notable improvements over the Separable-3D baseline, providing a
new perspective of explicitly considering motion dynamics in the deep networks.
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