
PointCNN: Convolution On X -Transformed Points

Yangyan Li†⇤ Rui Bu† Mingchao Sun† Wei Wu† Xinhan Di‡ Baoquan Chen§

†Shandong University ‡Huawei Inc. §Peking University

Abstract

We present a simple and general framework for feature learning from point clouds.
The key to the success of CNNs is the convolution operator that is capable of
leveraging spatially-local correlation in data represented densely in grids (e.g. im-
ages). However, point clouds are irregular and unordered, thus directly convolving
kernels against features associated with the points will result in desertion of shape
information and variance to point ordering. To address these problems, we propose
to learn an X -transformation from the input points to simultaneously promote two
causes: the first is the weighting of the input features associated with the points, and
the second is the permutation of the points into a latent and potentially canonical
order. Element-wise product and sum operations of the typical convolution operator
are subsequently applied on the X -transformed features. The proposed method
is a generalization of typical CNNs to feature learning from point clouds, thus
we call it PointCNN. Experiments show that PointCNN achieves on par or better
performance than state-of-the-art methods on multiple challenging benchmark
datasets and tasks.

1 Introduction

Spatially-local correlation is a ubiquitous property of various types of data that is independent of the
data representation. For data that is represented in regular domains, such as images, the convolution
operator has been shown to be effective in exploiting that correlation as the key contributor to the
success of CNNs on a variety of tasks [25]. However, for data represented in point cloud form,
which is irregular and unordered, the convoralution operator is ill-suited for leveraging spatially-local
correlations in the data.

!" !#

!$!%
1
!"

2
!#

3
!$ 4

!%
1
!"

2

!#

3
!$

4
!%

2

!"
3
!#

1
!$

4
!%

i ii iii iv

Figure 1: Convolution input from regular grids (i)
and point clouds (ii-iv). In (i), each grid cell is
associated with a feature. In (ii-iv), the points are
sampled from local neighborhoods, in analogy to
local patches in (i), and each point is associated
with a feature, an order index, and coordinates.

fii = Conv(K, [fa, fb, fc, fd]
T),

fiii = Conv(K, [fa, fb, fc, fd]
T),

fiv = Conv(K, [fc, fa, fb, fd]
T).

(1a)

fii = Conv(K,Xii ⇥ [fa, fb, fc, fd]
T),

fiii = Conv(K,Xiii ⇥ [fa, fb, fc, fd]
T),

fiv = Conv(K,Xiv ⇥ [fc, fa, fb, fd]
T).

(1b)

We illustrate the problems and challenges of applying convolutions on point clouds in Figure 1.
Suppose the unordered set of the C-dimensional input features is the same F = {fa, fb, fc, fd}

⇤Part of the work was done during Yangyan’s Autodesk Research 2017 summer visit.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

in all the cases ((i) � (iv)), and we have one kernel K = [k↵, k� , k� , k�]T of shape 4 ⇥ C. In
(i), by following the canonical order given by the regular grid structure, the features in the local
2 ⇥ 2 patch can be cast into [fa, fb, fc, fd]T of shape 4 ⇥ C, for convolving with K, yielding
fi = Conv(K, [fa, fb, fc, fd]T), where Conv(·, ·) is simply an element-wise product followed by
a sum2. In (ii), (iii), and (iv), the points are sampled from local neighborhoods, and thus their
ordering may be arbitrary. By following orders as illustrated in the figure, the input feature set F
can be cast into [fa, fb, fc, fd]T in (ii) and (iii), and [fc, fa, fb, fd]T in (iv). Based on this, if the
convolution operator is directly applied, the output features for the three cases could be computed as
depicted in Eq. 1a. Note that fii ⌘ fiii holds for all cases, while fiii 6= fiv holds for most cases. This
example illustrates that a direct convolution results in deserting shape information (i.e., fii ⌘ fiii),
while retaining variance to the ordering (i.e., fiii 6= fiv).

In this paper, we propose to learn a K ⇥K X -transformation for the coordinates of K input points
(p1, p2, ..., pK), with a multilayer perceptron [39], i.e., X = MLP(p1, p2, ..., pK). Our aim is to
use it to simultaneously weight and permute the input features, and subsequently apply a typical
convolution on the transformed features. We refer to this process as X -Conv, and it is the basic
building block for our PointCNN. The X -Conv for (ii), (iii), and (iv) in Figure 1 can be formulated
as in Eq. 1b, where the X s are 4⇥4 matrices, as K = 4 in this figure. Note that since Xii and Xiii are
learned from points of different shapes, they can differ so as to weight the input features accordingly,
and achieve fii 6= fiii. For Xiii and Xiv, if they are learned to satisfy Xiii = Xiv ⇥ ⇧, where ⇧ is
the permutation matrix for permuting (c, a, b, d) into (a, b, c, d), then fiii ⌘ fiv can be achieved.

From the analysis of the example in Figure 1, it is clear that, with ideal X -transformations, X -Conv
is capable of taking the point shapes into consideration, while being invariant to ordering. In practice,
we find that the learned X -transformations are far from ideal, especially in terms of the permutation
equivalence aspect. Nevertheless, PointCNN built with X -Conv is still significantly better than a
direct application of typical convolutions on point clouds, and on par or better than state-of-the-art
neural networks designed for point cloud input data, such as PointNet++ [35].

Section 3 contains the details of X -Conv, as well as PointCNN architectures. We show our results on
multiple challenging benchmark datasets and tasks in Section 4, together with ablation experiments
and visualizations for a better understanding of PointCNN.

2 Related Work

Feature Learning from Regular Domains. CNNs have been very successful for leveraging
spatially-local correlation in images — pixels in 2D regular grids [26]. There has been work
in extending CNNs to higher dimensional regular domains, such as 3D voxels [52]. However, as
both the input and convolution kernels are of higher dimensions, the amount of both computation
and memory inflates dramatically. Octree [37, 47], Kd-Tree [22] and Hash [41] based approaches
have been proposed to save computation by skipping convolution in empty space. The activations
are kept sparse in [13] to retain sparsity in convolved layers. [17] and [4] partition point cloud into
grids and represent each grid with grid mean points and Fisher vectors respectively for convolving
with 3D kernels. In these approaches, the kernels themselves are still dense and of high dimension.
Sparse kernels are proposed in [28], but this approach cannot be applied recursively for learning
hierarchical features. Compared with these methods, PointCNN is sparse in both input representation
and convolution kernels.

Feature Learning from Irregular Domains. Stimulated by the rapid advances and demands in
3D sensing, there has been quite a few recent developments in feature learning from 3D point
clouds. PointNet [33] and Deep Sets [58] proposed to achieve input order invariance by the use of a
symmetric function over inputs. PointNet++ [35] and SO-Net [27] apply PointNet hierarchically for
better capturing of local structures. Kernel correlation and graph pooling are proposed for improving
PointNet-like methods in [42]. RNN is used in [18] for processing features aggregated by pooling
from ordered point cloud slices. [50] proposed to leverage neighborhood structures in both point and
feature spaces. While these symmetric pooling based approaches, as well as those in [10, 58, 36],
have guarantee in achieving order invariance, they come with a price of throwing away information.

2Actually, this is a special instance of convolution — a convolution that is applied in one spatial location.
For simplicity, we call it convolution as well.

2

[43, 3, 44] propose to first “interpolate” or “project” features into predefined regular domains, where
typical CNNs can be applied. In contrast, the regular domain is latent in our method. CNN kernels
are represented as parametric functions of neighborhood point positions to generalize CNNs for point
clouds in [48, 14, 53]. The kernels associated with each point are parametrized individually in these
methods, while the X -transformations in our method are learned from each neighborhood, thus could
potentially by more adaptive to local structures.

Besides as point clouds, sparse data in irregular domains can be represented as graphs, or meshes,
and a few works have been proposed for feature learning from such representations [31, 55, 30]. We
refer the interested reader to [5] for a comprehensive survey of work along these directions. Spectral
graph convolution on a local graph is used for processing point clouds in [46].

Invariance vs. Equivariance. A line of pioneering work aiming at achieving equivariance has
been proposed to address the information loss problem of pooling in achieving invariance [16, 40].
The X -transformations in our formulation, ideally, are capable of realizing equivariance, and are
demonstrated to be effective in practice. We also found similarity between PointCNN and Spatial
Transformer Networks [20], in the sense that both of them provided a mechanism to “transform”
input into latent canonical forms for being further processed, with no explicit loss or constraint in
enforcing the canonicalization. In practice, it turns out that the networks find their ways to leverage
the mechanism for learning better. In PointCNN, the X -transformation is supposed to serve for both
weighting and permutation, thus is modelled as a general matrix. This is different than that in [8],
where a permutation matrix is the desired output, and is approximated by a doubly stochastic matrix.

3 PointCNN

The hierarchical application of convolutions is essential for learning hierarchical representations via
CNNs. PointCNN shares the same design and generalizes it to point clouds. First, we introduce
hierarchical convolutions in PointCNN, in analogy to that of image CNNs, then, we explain the core
X -Conv operator in detail, and finally, present PointCNN architectures geared toward various tasks.

3.1 Hierarchical Convolution

!"#$!"#$

%-!"#$ %-!"#$

'(')

*(*)

+(+)

Figure 2: Hierarchical convolution on regular
grids (upper) and point clouds (lower). In reg-
ular grids, convolutions are recursively applied
on local grid patches, which often reduces the
grid resolution (4⇥ 4! 3⇥ 3! 2⇥ 2), while
increasing the channel number (visualized by dot
thickness). Similarly, in point clouds, X -Conv is
recursively applied to “project”, or “aggregate”,
information from neighborhoods into fewer rep-
resentative points (9 ! 5 ! 2), but each with
richer information.

Before we introduce the hierarchical convolution in PointCNN, we briefly go through its well known
version for regular grids, as illustrated in Figure 2 upper. The input to grid-based CNNs is a feature
map F1 of shape R1 ⇥ R1 ⇥ C1, where R1 is the spatial resolution, and C1 is the feature channel
depth. The convolution of kernels K of shape K ⇥K ⇥ C1 ⇥ C2 against local patches of shape
K ⇥K ⇥C1 from F1, yields another feature map F2 of shape R2 ⇥R2 ⇥C2. Note that in Figure 2
upper, R1 = 4, K = 2, and R2 = 3. Compared with F1, F2 is often of lower resolution (R2 < R1)
and of deeper channels (C2 > C1), and encodes higher level information. This process is recursively
applied, producing feature maps with decreasing spatial resolution (4 ⇥ 4 ! 3 ⇥ 3 ! 2 ⇥ 2 in
Figure 2 upper), but deeper channels (visualized by increasingly thicker dots in Figure 2 upper).

The input to PointCNN is F1 = {(p1,i, f1,i) : i = 1, 2, ..., N1}, i.e., a set of points {p1,i : p1,i 2
RDim}, each associated with a feature {f1,i : f1,i 2 RC1}. Following the hierarchical construction
of grid-based CNNs, we would like to apply X -Conv on F1 to obtain a higher level representation
F2 = {(p2,i, f2,i) : f2,i 2 RC2 , i = 1, 2, ..., N2}, where {p2,i} is a set of representative points of

3

("#,#, %#,#)

"',#
"',' "','"',# "','"',#

[)*+,("#,#− "',#), %#,#]

a b c

("#,# −"',',%#,#)
[)*+,("#,#− "',#), %#,#]("#,# −"',#,%#,#)

Figure 3: The process for converting point coordinates to features. Neighboring points are transformed
to the local coordinate systems of the representative points (a and b). The local coordinates of each
point are then individually lifted and combined with the associated features (c).

{p1,i} and F2 is of a smaller spatial resolution and deeper feature channels than F1, i.e., N2 < N1,
and C2 > C1. When the X -Conv process of turning F1 into F2 is recursively applied, the input points
with features are “projected”, or “aggregated”, into fewer points (9! 5! 2 in Figure 2 lower), but
each with increasingly richer features (visualized by increasingly thicker dots in Figure 2 lower).

The representative points {p2,i} should be the points that are beneficial for the information “projection”
or “aggregation”. In our implementation, they are generated by random down-sampling of {p1,i} in
classification tasks, and farthest point sampling in segmentation tasks, since segmentation tasks are
more demanding on a uniform point distribution. We suspect some more advanced point selections
which have shown promising performance in geometry processing, such as Deep Points [51], could
fit in here as well. We leave the exploration of better representative point generation methods for
future work.

3.2 X -Conv Operator

X -Conv is the core operator for turning F1 into F2. In this section, we first introduce the input, output
and procedure of the operator, and then explain the rationale behind the procedure.

ALGORITHM 1: X -Conv Operator
Input :K, p, P, F
Output :Fp . Features “projected”, or “aggregated”, into representative point p
1: P0 P� p . Move P to local coordinate system of p
2: F� MLP�(P

0) . Individually lift each point into C� dimensional space
3: F⇤ [F�,F] . Concatenate F� and F, F⇤ is a K ⇥ (C� + C1) matrix
4: X MLP(P0) . Learn the K ⇥K X -transformation matrix
5: FX X ⇥ F⇤ . Weight and permute F⇤ with the learnt X
6: Fp Conv(K,FX) . Finally, typical convolution between K and FX

To leverage spatially-local correlation, similar to convolution in grid-based CNNs, X -Conv operates
in local regions. Since the output features are supposed to be associated with the representative
points {p2,i}, X -Conv takes their neighborhood points in {p1,i}, as well as the associated features,
as input to convolve with. For simplicity, we denote a representative point in {p2,i} as p, the
features with p as f and its K neighbors in {p1,i} as N, thus the X -Conv input for this specific p is
S = {(pi, fi) : pi 2 N}. Note that S is an unordered set. Without loss of generality, S can be cast
into a K ⇥Dim matrix P = (p1, p2, ..., pK)T , and a K ⇥ C1 matrix F = (f1, f2, ..., fK)T , and K
denotes the trainable convolution kernels. With these inputs, we would like to compute the features
Fp, which are the “projection”, or “aggregation”, of the input features into the representative point p.
We detail the X -Conv operator in Algorithm 1, and summarize it concisely as:

Fp = X�Conv(K, p,P,F) = Conv(K,MLP(P� p)⇥ [MLP�(P� p),F]), (2)

where MLP�(·) is a multilayer perceptron applied individually on each point, as in PointNet [33].
Note that all the operations involved in building X -Conv, i.e., Conv(·, ·), MLP(·), matrix multiplica-
tion (·)⇥ (·), and MLP�(·), are differentiable. Accordingly. X -Conv is differentiable, and can be
plugged into a neural network for training by back propagation.

Lines 4-6 in Algorithm 1 are the core X -transformation as described in Eq. 1b in Section 1. Here,
we explain the rationale behind lines 1-3 of Algorithm 1 in detail. X -Conv is designed to work
on local point regions, and the output should not be dependent on the absolute position of p and

4

its neighboring points, but on their relative positions. To that end, we position local coordinate
systems at the representative points (line 1 of Algorithm 1, Figure 3b). It is the local coordinates of
neighboring points, together with their associated features, that define the output features. However,
the local coordinates are of a different dimensionality and representation than the associated features.
To address this issue, we first lift the coordinates into a higher dimensional and more abstract
representation (line 2 of Algorithm 1), and then combine it with the associated features (line 3 of
Algorithm 1) for further processing (Figure 3c).

Lifting coordinates into features is done through a point-wise MLP�(·), as in PointNet-based methods.
Differently, however,the lifted features are not processed by a symmetric function. Instead, along
with the associated features, they are weighted and permuted by the X -transformation that is jointly
learned across all neighborhoods. The resulting X is dependent on the order of the points, and this
is desired, as X is supposed to permute F⇤ according to the input points, and therefore has to be
aware of the specific input order. For an input point cloud without any additional features, i.e., F is
empty, the first X -Conv layer uses only F� . PointCNN can thus handle point clouds with or without
additional features in a robust uniform fashion.

For more details about the X -Conv operator, including the actual definition of MLP�(·), MLP(·)
and Conv(·, ·), please refer to Supplementary Material Section 1.

3.3 PointCNN Architectures

From Figure 2, we can see that the Conv layers in grid-based CNNs and X -Conv layers in PointCNN
only differ in two aspects: the way the local regions are extracted (K ⇥K patches vs. K neighboring
points around representative points) and the way the information from local regions is learned (Conv
vs. X -Conv). Otherwise, the process of assembling a deep network with X -Conv layers highly
resembles that of grid-based CNNs.

!-#$%&((= 4, # = #,,- = 4)

!-#$%&((= 1, # = #0,- = 4)

!-#$%&((= 7, # = #,,- = 4)

!-#$%&((= 4, # = #0,- = 4, 2 = 2)

a b

!-#$%&((= 7, # = #,,- = 4)

!-#$%&((= 4, # = #0,- = 4, 2 = 2)

c

7#8

9$88

7#8

9$88

7#8

9$88

7#8

9$88

7#8

9$88

!-#$%&((= 7, # = #:,- = 3)

!-#$%&((= 10, # = #=,- = 3)
Figure 4: PointCNN architecture
for classification (a and b) and
segmentation (c), where N and C
denote the output representative
point number and feature dimen-
sionality, K is the neighboring
point number for each representa-
tive point, and D is the X -Conv
dilation rate.

Figure 4a depicts a simple PointCNN with two X -Conv layers that gradually transform the input
points (with or without features) into fewer representation points, but each with richer features. After
the second X -Conv layer, there is only one representative point left, and it aggregates information
from all the points from the previous layer. In PointCNN, we can roughly define the receptive field of
each representative point as the ratio K/N , where K is the neighboring point number, and N is the
point number in the previous layer. With this definition, the final point “sees” all the points from the
previous layer, thus has a receptive field of 1.0 — it has a global view of the entire shape, and its
features are informative for semantic understanding of the shape. We can add fully connected layers
on top of the last X -Conv layer output, followed by a loss, for training the network.

Note that the number of training samples for the top X -Conv layers drops rapidly (Figure 4a), making
it inefficient to train them thoroughly. To address this problem, we propose PointCNN with denser
connections (Figure 4b), where more representative points are kept in the X -Conv layers. However,
we aim to maintain the depth of the network, while keeping the receptive field growth rate, such that
the deeper representative points “see” increasingly larger portions of the entire shape. We achieve
this goal by employing the dilated convolution idea from grid-based CNNs in PointCNN. Instead of
always taking the K neighboring points as input, we uniformly sample K input points from K ⇥D
neighboring points, where D is the dilation rate. In this case, the receptive field increases from K/N
to (K ⇥D)/N , without increasing actual neighboring point count or kernel size.

In the second X -Conv layer of PointCNN in Figure 4b, dilation rate D = 2 is used, thus all the
four remaining representative points “see” the entire shape, and all of them are suitable for making

5

ModelNet40 ScanNetPre-aligned Unaligned
mA OA mA OA mA OA

Flex-Convolution [14] - 90.2 - - - -
KCNet [42] - 91 - - - -
Kd-Net [22] 88.5 90.6 (91.8 w/ P32768) - - - -
SO-Net [27] - 90.7 (93.4 w/ PN5000) - - - -
3DmFV-Net [4] - 91.4 (91.6 w/ P2048) - - - -
PCNN [3] - 92.3 - - - -
PointNet [33] - - 86.2 89.2 - -
PointNet++ [35] - - - 90.7 (91.9 w/ PN5000) - 76.1
SpecGCN [46] - - - 91.5 (92.1 w/ PN2048) - -
SpiderCNN [53] - - - - (92.4 w/ PN1024) - -
DGCNN [50] - - 90.2 92.2 - -
PointCNN 88.8 92.5 88.1 92.2 55.7 79.7

Table 1: Comparisons of mean
per-class accuracy (mA) and
overall accuracy (OA) (%) on
ModelNet40 [52] and Scan-
Net [9]. The reported perfor-
mances are based on 1024 input
points, unless otherwise noted
by P# (# input points) or PN#
(# input points with normals).

predictions. Note that, in this way, we can train the top X -Conv layers more thoroughly, as much
more connections are involved in the network, compared to PointCNN in Figure 4a. In test time,
the output from the multiple representative points is averaged right before the softmax to stabilize
the prediction. This design is similar to that of Network in Network [29]. The denser version of
PointCNN (Figure 4b) is the one we used for classification tasks.

For segmentation tasks, high resolution point-wise output is required, and this can be realized by
building PointCNN following Conv-DeConv [32] architecture, where the DeConv part is responsible
for propagating global information into high resolution predictions (see Figure 4c). Note that both
the “Conv” and “DecConv” in the PointCNN segmentation network are the same X -Conv operator.
The only differences between the “Conv” and “DeConv” layers is that the latter has more points but
less feature channels in its output vs. its input, and its higher resolution points are forwarded from
earlier “Conv” layers, following the design of U-Net [38].

Dropout is applied before the last fully connected layer to reduce over-fitting. We also employed
the “subvolume supervision” idea from [34], to further address the over-fitting problem. In the last
X -Conv layers, the receptive field is set to be less than 1, such that only partial information is “seen”
by the representative points. The network is pushed to learn harder from the partial information during
training, and performs better at test time. In this case, the global coordinates of the representative
points matter, thus they are lifted into feature space RCg with MLPg(·) (detailed in Supp. Material
Section 1) and concatenated into X -Conv for further processing by follow-up layers.

Data augmentation. To train the parameters in X -Conv, it is evidently not beneficial to keep using
the same set of neighboring points, in the same order, for a specific representative point. To improve
generalization, we propose to randomly sample and shuffle the input points, such that both the
neighboring point sets and order may differ from batch to batch. To train a model that takes N points
as input, N (N, (N/8)2) points are used for training, where N denotes a Gaussian distribution. We
found that this strategy is crucial for successful training of PointCNN.

4 Experiments

We conducted an extensive evaluation of PointCNN for shape classification on six datasets (Model-
Net40 [52], ScanNet [9], TU-Berlin [11], Quick Draw [15], MNIST, CIFAR10), and segmentation
task on three datasets (ShapeNet Parts [54], S3DIS [2], and ScanNet [9]). The details of the datasets
and how we convert and feed data into PointCNN, are described in Supp. Material Section 2, and the
PointCNN architectures for the tasks on these datasets can be found in Supp. Material Section 3.

4.1 Classification and Segmentation Results

We summarize our 3D point cloud classification results on ModelNet40 and ScanNet in Table 1,
and compare to several neural network methods designed for point clouds. Note that a large portion
of the 3D models from ModelNet40 are pre-aligned to the common up direction and horizontal
facing direction. If a random horizontal rotation is not applied on either the training or testing sets,
then the relatively consistent horizontal facing direction is leveraged, and the metrics based on this
setting is not directly comparable to those with the random horizontal rotation. For this reason, we
ran PointCNN and reported its performance in both settings. Note that PointCNN achieved top
performance on both ModelNet40 and ScanNet.

6

ShapeNet Parts S3DIS ScanNet
pIoU mpIoU mIoU OA

SyncSpecCNN [55] 84.74 82.0 - -
Pd-Network [22] 85.49 82.7 - -
SSCN [12] 85.98 83.3 - -
SPLATNet [43] 85.4 83.7 - -
SpiderCNN [53] 85.3 81.7 - -
SO-Net [27] 84.9 81.0 - -
PCNN [3] 85.1 81.8 - -
KCNet [42] 83.7 82.2 - -
SpecGCN [46] 85.4 - - -
Kd-Net [22] 82.3 77.4 - -
3DmFV-Net [4] 84.3 81.0 - -
RSNet [18] 84.9 81.4 56.47 -
DGCNN [50] 85.1 82.3 56.1 -
PointNet [33] 83.7 80.4 47.6 73.9
PointNet++ [35] 85.1 81.9 - 84.5
SGPN [49] 85.8 82.8 50.37 -
SPGraph [24] - - 62.1 -
TCDP [44] - - - 80.9
PointCNN 86.14 84.6 65.39 85.1

Table 2: Segmentation comparisons on ShapeNet
Parts in part-averaged IoU (pIoU, %) and mean per-
class pIoU (mpIoU, %), S3DIS in mean per-class
IoU (mIoU, %) and ScanNet in per voxel overall
accuracy (OA, %).

We evaluate PointCNN on the segmentation of
ShapeNet Parts, S3DIS, and ScanNet datasets,
and summarize the results in Table 2. More
detailed segmentation result comparisons can
be found in Supplementary Material Section 4.
We note that PointCNN outperforms all the
compared methods, including SSCN [12], SP-
Graph [24] and SGPN [49], which are special-
ized segmentation networks with state-of-the-art
performance. Note that the part averaged IoU
metric for ShapeNet Parts is the one used in [56].
Compared with mean IoU, the part averaged IoU
puts more emphasis on the correct prediction of
small parts.

Sketches are 1D curves in 2D space, thus
can be more effectively represented with point
clouds, rather than with 2D images. We eval-
uate PointCNN on TU-Berlin and Quick Draw
sketches, and present results in Table 3, where
we compare its performance with the competi-
tive PointNet++, as well as image CNN based
methods. PointCNN outperforms PointNet++
on both datasets, with a more prominent advan-
tage on Quick Draw (25M data samples), which
is significantly larger than TU-Berlin (0.02M data samples). On the TU-Berlin dataset, while the
performance of PointCNN is slightly better than the generic image CNN AlexNet [23], there is still a
gap with the specialized Sketch-a-Net [57]. It is interesting to study whether architectural elements
from Sketch-a-Net can be adopted and integrated into PointCNN to improve its performance on the
sketch datasets.

Since X -Conv is a generalization of Conv, ideally, PointCNN should perform on par with CNNs,
if the underlying data is the same, but only represented differently. To verify this, we evaluate
PointCNN on the point cloud representation of MNIST and CIFAR10, and show results in Table 4.
For MNIST data, PointCNN achieved comparable performance with other methods, indicating its
effective learning of the digits’ shape information. For CIFAR10 data, where there is mostly no
“shape” information, PointCNN has to learn mostly from the spatially-local correlation in the RGB
features, and it performed reasonably well on this task, though there is a large gap between PointCNN
and the mainstream image CNNs. From this experiment, we can conclude that CNNs are still the
better choice for general images.

Method TU-Berlin Quick Draw
Sketch-a-Net [57] 77.95 -
AlexNet [23] 68.60 -
PointNet++ [35] 66.53 51.58
PointCNN 70.57 59.13

Table 3: Sketch classification results.

Method MNIST CIFAR10
LeNet [26] 99.20 84.07
Network in Network [29] 99.53 91.20
PointNet++ [33] 99.49 10.03

PointCNN 99.54 80.22
Table 4: Image classification results.

4.2 Ablation Experiments and Visualizations

Ablation test of the core X -Conv operator. To verify the effectiveness of the X -transformation,
we propose PointCNN without it as a baseline, where lines 4-6 of Algorithm 1 are replaced by Fp
Conv(K,F⇤). Compared with PointCNN, the baseline has less trainable parameters, and is more
“shallow” due to the removal of MLP(·) in line 4 of Algorithm 1. For a fair comparison, we further
propose PointCNN w/o X -W/D, which is wider/deeper, and has approximately the same amount
of parameters as PointCNN. The model depth of PointCNN w/o X (deeper) also compensates for

3PointNet++ performs no better than random choice on CIFAR10. We suspect the reason is that, in
PointNet++, the RGB features become in-discriminative after being processed by the max-pooling. Together
with the lack of “shape” information, PointNet++ fails completely on this task.

7

Figure 5: T-SNE visualization of features without (a/Fo), before (b/F⇤) and after (c/FX) X -
transformation.

the decrease in depth caused by the removal of MLP(·) from PointCNN. The comparison results
are summarized in Table 5. Clearly, PointCNN outperforms the proposed variants by a significant
margin, and the gap between PointCNN and PointCNN w/o X is not due to model parameter number,
or model depth. With these comparisons, we conclude that X -Conv is the key to the performance of
PointCNN.

PointCNN w/o X w/o X -W w/o X -D
Core Layers X -Conv⇥4 Conv⇥4 Conv⇥4 Conv⇥5
Parameter 0.6M 0.54M 0.63M 0.61M
Accuracy (%) 92.2 90.7 90.8 90.7

Table 5: Ablation tests on ModelNet40.

Visualization of X -Conv features. Each rep-
resentative point, with its neighboring points in a
particular order, has a corresponding F⇤ and FX
in RK⇥C , where C = C� + C1. For the same
representative point, if its neighboring points in
different orders are fed into the network, we get
a set of F⇤ and FX , and we denote them as F⇤
and FX . Similarly, we define the set of F⇤ in PointCNN w/o X as Fo. Clearly, F⇤ can be quite
scattering in the RK⇥C space, since differences in input point order will result in a different F⇤. On
the other hand, if the learned X can perfectly canonize F⇤, FX is supposed to stay at a canonical
point in the space.

To verify this, we show T-SNE visualization of Fo, F⇤ and FX of 15 randomly picked representative
points from the ModelNet40 dataset in Figure 5, each with one color, and consistent in the sub-figures.
Note that Fo is quite “blended”, which indicates that the features from different representative points
are not discriminative against each other (Figure 5a). While F⇤ is better than Fo, it is still “fuzzy”
(Figure 5b). In Figure 5c, FX are “concentrated” by X , and the features of each representative point
become highly discriminative. To give an quantitative reference of the “concentration” effect, we
firstly compute the feature centers of different representative points, then classify all the feature points
to the representative points they belong to, based on nearest search to the centers. The classification
accuracies are 76.83%, 89.29% and 94.72% for Fo, F⇤ and FX , respectively. With the qualitative
visualization and quantitative investigation, we conclude that though the “concentration” is far from
reaching a point, the improvement is significant, and it explains the performance of PointCNN in
feature learning.

Methods PointNet [33] PointNet++ [35] 3DmFV-Net [4] DGCNN [50] SpecGCN [46] PCNN [3] PointCNN
Parameters 3.48M 1.48M 45.77M 1.84M 2.05M 8.2M 0.6M

FLOPs Training 43.82B 67.94B 48.57B 131.37B 49.97B 6.49B 93.03B
Inference 14.70B 26.94B 16.89B 44.27B 17.79B 4.70B 25.30B

Time Training 0.068s 0.091s 0.101s 0.171s 14.640s 0.476s 0.031s
Inference 0.015s 0.027s 0.039s 0.064s 11.254s 0.226s 0.012s

Table 6: Parameter number, FLOPs and running time comparisons.

Optimizer, model size, memory usage and timing. We implemented PointCNN in tensorflow [1],
and use ADAM optimizer [21] with an initial learning rate 0.01 for the training of our models. As
shown in Table 6, we summarize our running statistics based with the model for classification with
batch size 16, 1024 input points on nVidia Tesla P100 GPU, in comparison with several other methods.
PointCNN achieves 0.031/0.012 second per batch for training/inference on this setting. In addition,
the model for segmentation with 2048 input points has 4.4M parameters runs on nVidia Tesla P100
with batch size 12 at 0.61/0.25 second per batch for training/inference.

8

