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Abstract

Convolutional neural networks (CNNs) are inherently subject to invariable filters
that can only aggregate local inputs with the same topological structures. It causes
that CNNs are allowed to manage data with Euclidean or grid-like structures (e.g.,
images), not ones with non-Euclidean or graph structures (e.g., traffic networks). To
broaden the reach of CNNs, we develop structure-aware convolution to eliminate
the invariance, yielding a unified mechanism of dealing with both Euclidean and
non-Euclidean structured data. Technically, filters in the structure-aware convolu-
tion are generalized to univariate functions, which are capable of aggregating local
inputs with diverse topological structures. Since infinite parameters are required
to determine a univariate function, we parameterize these filters with numbered
learnable parameters in the context of the function approximation theory. By re-
placing the classical convolution in CNNs with the structure-aware convolution,
Structure-Aware Convolutional Neural Networks (SACNNs) are readily estab-
lished. Extensive experiments on eleven datasets strongly evidence that SACNNs
outperform current models on various machine learning tasks, including image
classification and clustering, text categorization, skeleton-based action recognition,
molecular activity detection, and taxi flow prediction.

1 Introduction

Convolutional neural networks (CNNs) provide an effective and efficient framework to deal with
Euclidean structured data, including speeches and images. As a core module in CNNs, the convolution
unit explicitly allows to share parameters among the whole spatial domains to extremely reduce the
number of parameters, without sacrificing the expressive capability of networks [3]. Benefiting from
such artful modeling, significant successes have been achieved in a multitude of fields, including the
image classification [15, 24] and clustering [5, 6], the object detection [9, 32], and amongst others.

Although the achievements in the literature are brilliant, CNNs are still incompetent to handle non-
Euclidean structured data, such as the traffic flow data on traffic networks, the relational data on
social networks, and the active data on molecule structure networks. The major limitation originates
from that the classical filters are invariant at each location. As a result, the filters can only be applied
to aggregate local inputs with the same topological structures, not with diverse topological structures.

In order to eliminate the limitation, we develop structure-aware convolution in which a single share-
able filter suffices to aggregate local inputs with diverse topological structures. For this purpose, we
generalize the classical filters to univariate functions that can be effectively and efficiently parameter-
ized under the guidance of the function approximation theory. Then, we introduce local structure
representations to quantificationally encode topological structures. By modeling these representations
into the generalized filters, the corresponding local inputs can be aggregated based on the generalized
filters consequently. In practice, Structure-Aware Convolutional Neural Networks (SACNNs) can
be readily established by replacing the classical convolution in CNNs with our structure-aware
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convolution. Since all the operations in our structure-aware convolution are differentiable, SACNNs
can be trained end-to-end by the standard back-propagation.

To sum up, the key contributions of this paper are:

• The structure-aware convolution is developed to establish SACNNs to uniformly deal with
both Euclidean and non-Euclidean structured data, which broadens the reach of convolution.

• We introduce the learnable local structure representations, which endow SACNNs with the
capability of capturing the latent structures of data in a purely data-driven way.

• By taking advantage of the function approximation theory, SACNNs can be effectively and
efficiently trained with the standard back-propagation to guarantee the practicability.

• Extensive experiments demonstrate that SACNNs are superior to current models in various
machine learning tasks, including classification, clustering, and regression.

2 Related work

2.1 Convolutional neural networks (CNNs)

To elevate the performance of CNNs, much research has been devoted to designing the convolution
units, which can be roughly divided into two classes, i.e., handcrafted and learnable ones.

Handcrafted convolution units generally derive from the professional knowledge. Primary convolution
units [24, 26] present large sizes, e.g., 7× 7 pixels in images. To increase the nonlinearity, stacking
multiple small filters (e.g., 3× 3 pixels) instead of using a single large filter has become a common
design in CNNs [38]. To obtain larger receptive fields, the dilated convolution [41], whose receptive
field size grows exponentially while the number of parameters grows linearly, is proposed. In addition,
the separable convolution [7] promotes performance by integrating various filters with diverse sizes.

Among the latter, lots of efforts have been widely made to learn convolution units. By introducing
additional parameters named offsets, the active convolution [19] is explored to learn the shape of
convolution. To achieve dynamic offsets that vary with inputs, the deformable convolution [9] is
proposed. Contrary to such modifications, some approaches have been devoted to directly capturing
structures of data to improve the performance of CNNs, such as the spatial transform networks [18].

While these models have been successful on Euclidean domains, they can hardly be applied to
non-Euclidean domains. In contrast, our SACNNs can be utilized on these two domains uniformly.

2.2 Graph convolutional neural networks (GCNNs)

Recently, there has been a growing interest in applying CNNs to non-Euclidean domains [3, 29, 31,
35]. Generally, existing methods can be summarized into two types, i.e., spectral and spatial methods.

Spectral methods explore an analogical convolution operator over non-Euclidean domains on the basis
of the spectral graph theory [4, 16, 27]. Relying on the eigenvectors of graph Laplacian, data with non-
Euclidean structures can be filtered on the corresponding spectral domain. To enhance the efficiency
and acquire spectrum-free methods without performing eigen-decomposition, polynomial-based
networks are developed to execute convolution on non-Euclidean domains efficiently [10, 22].

Contrary to the spectral methods, spatial methods always analogize the convolutional strategy based
on the local spatial filtering [1, 2, 30, 31, 37, 40]. The major difference between these methods lies in
the intrinsic coordinate systems used for encoding local patches. Typically, the diffusion CNNs [1]
encode local patches based on the random walk process on graphs, the anisotropic CNNs [2] employ
an anisotropic patch-extraction method, and the geodesic CNNs [30] represent local patches in polar
coordinates. In the mixture-model CNNs [31], synthetically, learnable local pseudo-coordinates are
developed to parameterize local patches in a general way. Additionally, a series of spatial methods
without the classical convolutional strategy have also been explored, including the message passing
neural networks [12, 28, 34], and the graph attention networks [39].

In spite of considerable achievements, both spectral and spatial methods partially rely on fixed
structures (i.e., fixed relationship matrix) in graphs. Benefiting from the proposed structure-aware
convolution, by comparison, the structures can be learned from data automatically in our SACNNs.
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3 Structure-aware convolution

Convolution, intrinsically, is an aggregation operation between local inputs and filters. In practice,
local inputs involve not only their input values but also topological structures. Accordingly, filters
should be in a position to aggregate local inputs with diverse topological structures. To this end, we
develop the structure-aware convolution by generalizing the filters in the classical convolution and
modeling the local structure information into the generalized filters.

The filters in the classical convolution can be smoothly generalized to univariate functions. Without
loss of generality and for simplicity, we elaborate such generalization with 1-Dimensional data. Given
an input x ∈ Rn and a filter w ∈ R2m−1, the output at the i-th vertex (location) is

ȳi = wTxi =
∑

i−m<j<i+m

wj−i+m · xj , i ∈ {1, 2, · · · , n}, (1)

where xi = [xi−m+1, · · · , xi+m−1]T is the local input at the i-th vertex, i−m < j < i+m indicates
that the j-th vertex is a neighbor of the i-th vertex, wj−i+m and xj signify the (j − i+m)-th and
j-th elements in w and x, respectively. For any univariate function f(·), Eq. (1) can be equivalently
rewritten as follows when f(j − i+m) = wj−i+m is always satisfied, i.e.,

ȳi = fTRxi =
∑

i−m<j<i+m

f(j − i+m) · xj , i ∈ {1, 2, · · · , n}, (2)

where f(·) is called a functional filter,R = {j− i+m | i−m < j < i+m} = {1, 2, · · · , 2m−1},
and fR = {f(r)|r ∈ R}. Actually,R encodes relationships between a vertex and its neighbors. For
example, r ∈ R means that the (i−m+ r)-th vertex is the r-th neighbor of the i-th vertex. Since the
relationships inR can reflect the structure information around a vertex, we callR a local structure
representation. Generally, the local structure representationR is constant in the classical convolution,
which causes that the same fR is shared at each vertex. As a result, the classical convolution solely
pertains to manage data with the same local topological structures, not with diverse ones.

To handle this limitation, we introduce general local structure representations to quantificationally
encode any local topological structure, and then develop structure-aware convolution by replacing the
constantR in classical convolution with the introduced general ones. Technically, both Euclidean
and non-Euclidean structured data can be represented by a graph G = (V, E ,R), where the vertices
in V store the values of data, the edges in E indicate whether two vertices are connected, and the
relationship matrix R signifies the structure information in the graph G. For a vertex i ∈ V , the local
structure representation at i is encoded via the relationships with its neighbors, i.e.,

Ri = {rji|eji ∈ E}, i ∈ {1, 2, · · · , n}, (3)
where eji ∈ E means that the j-th vertex is a neighbor of the i-th vertex, rji is the element of R at (j, i)
and indicates the relationship from the j-th vertex to the i-th vertex. Note that S = {Ri|i ∈ V} can
include the whole structure information in the graph G by integrating the local structure representations
together. This implies that Eq. (3) is a reasonable formulation for local topological structures. Based
on the introduced local structure representations, the structure-aware convolution is developed by
modeling these representations into the generalized functional filters. Formally, given an input x
embedded on the graph G and a functional filter f(·), we define the structure-aware convolution as

ȳi = fTRi
xi =

∑
eji∈E

f(rji) · xj , i ∈ {1, 2, · · · , n}, (4)

where fRi = {f(rji)|eji ∈ E} varies withRi. Benefiting from this modification, the structure-aware
convolution is capable of aggregating local inputs with diverse topological structures.

4 Structure-aware convolutional neural networks

Replacing the classical convolution in CNNs with the structure-aware convolution, SACNNs are
established. Intuitively, a structure-aware convolutional layer is illustrated in Figure 1. However,
two essential problems need to be tackled before training SACNNs. First, functional filters in the
structure-aware convolution are univariate functions, which need infinite parameters to be determined.
This implies that SACNNs can not be learned in a common way, and an effective and efficient strategy
is required to learn these filters with numbered parameters. Second, local structure representations
(or the relationship matrix R) may be hardly defined in advance and thus a learning mechanism is
needed. In the following, Section 4.1 and 4.2 focus on tackling these two problems, respectively.
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Figure 1: A structure-aware convolutional layer. For clarity of exposition, the input x has c = 2
channels with n = 6 vertices, the output y has a single channel, and x̄j , x̄i ∈ Rc indicate the j-th
and i-th rows of the input x, respectively. For each vertex i, its local structure representation is first
captured from the input and represented asRi, which is identically shared for each channel of the
input x. Afterwards, the local inputs in the first and second channels are aggregated via the first filter
f1(·) and the second filter f2(·) respectively, with the sameRi. Note that f1(·) and f2(·) are shared
for every location in the first and second channels, respectively.

4.1 Polynomial parametrization for functional filters

We parameterize the developed functional filters with numbered learnable parameters under the
guidance of the function approximation theory. In mathematics, for an arbitrary univariate function
h(x), it can be composed of a group basis functions {h1(x), h2(x), · · · } with a set of coefficients
{v1, v2, · · · }, denoted by h(x) '∑t

k=1 vk · hk(x), where hk(x) and vk are the k-th basis function
and the corresponding coefficient, respectively. The equation is satisfied when t tends to infinity.

Because of the high efficiency [14], our functional filters are parameterized based on the Chebyshev
polynomials that form an orthogonal basis for L2([−1, 1], dy/

√
1− y2), the Hilbert space of square

integrable functions with respect to the measure dy/
√

1− y2. Formally, the Chebyshev polynomial
hk(x) of order k−1 (k ≥ 3) can be generated by the stable recurrence relation hk(x) = 2xhk−1(x)−
hk−2(x), with h1(x) = 1 and h2(x) = x. In practice, the truncated expansion of Chebyshev
polynomials is employed to approximate the functional filter f(·) in Eq. (4), i.e.,

yi =
∑
eji∈E

f(rji) · xj =
∑
eji∈E

(
t∑

k=1

vk · hk(rji)

)
· xj , i ∈ {1, 2, · · · , n}, (5)

where t is the number of the truncated polynomials, and {v1, · · · , vt} are t learnable coefficients cor-
responding to the polynomials {h1(x), · · · , ht(x)}. Note that f(rji) can be cumulatively computed
based on the recurrence relation, leading to an efficient computing strategy.

4.2 Local structure representations learning

To eliminate the feature engineering, we consider to learn local structure representations from data
rather than using predefined ones. To preserve the structure consistency between channels, for every
structure-aware convolutional layer, only a single local structure representation set S = {Ri|i ∈ V}
is identically learned for each channel of the input. Formally, given a multi-channel input feature
map x ∈ Rn×c, where n and c denote the numbers of vertices and channels respectively, the local
structure representation at each vertex is learned as

Ri = {rji = T (x̄T
j Mx̄i) | eji ∈ E}, i ∈ {1, 2, · · · , n}, (6)

where x̄j , x̄i ∈ Rc indicate the j-th and i-th rows of the input x respectively, M ∈ Rc×c is a matrix
with c× c learnable parameters to measure relationships between local vertices, and T (·) is the Tanh
function to normalize elements in local structure representations into [−1, 1] strictly.

This local structure learning formulation has two good properties. First, M is identically shared for
each channel of the input, so every channel possesses the same structure in each structure-aware
convolutional layer and the size of M only depends on the number of channels. As a result, only a
few additional parameters are required to be learned, which can alleviate the overfitting when training
data is limited. Second, M is not constrained as a symmetric matrix, namely rji may not be equal to
rij . This implies that our approach is capable of modeling not only undirected structures, but also
direct structures, such as the traffic networks and the social networks.
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4.3 Understanding the structure-aware convolution

In this subsection, we give the following theorem to reveal the essence of our structure-aware
convolution (the proof is reported in the supplementary material).

Theorem 1. Under the Chebyshev polynomial basis, the structure-aware convolution is equivalent to

yi = vTPixi, i ∈ {1, 2, · · · , n},

where v ∈ Rt is the coefficients of the polynomials, Pi ∈ Rt×m is a matrix determined by the local
structure representationRi and the polynomials, and xi ∈ Rm is the local input at the i-th vertex.

Theorem 1 indicates that the structure-aware convolution can be split into two independent units, i.e.,
a transformation Pi ∈ Rt×m and a vector v ∈ Rt. In the first unit, the transformation Pi devotes
to encoding the m-Dimensional local inputs as t-Dimensional vectors. Since the basis functions
are fixed in the Chebyshev polynomial basis, Pi is purely depended on the corresponding local
structure representationRi that is varied with the vertex i and can be learned according to Eq. (6).
It is worth noting that this transformation Pi is similar to a specific local spatial transformer in the
spatial transform networks [18]. In the second unit, the learnable vector v is shared by every vertex
to aggregate these encoded local inputs, which is akin to the classical convolution. By integrating
these two learnable units together, the structure-aware convolution can simultaneously focus on local
input values and local topological structures to capture high-level representations.

5 Experiments

In this section, we systematically carry out extensive experiments to verify the capability of SACNNs.
Due to the space restriction we report some experimental details in the supplement, such as the
gradients during training, descriptions of datasets, descriptions of datasets, and network architectures.
Specifically, Our core code will be released at https://github.com/vector-1127/SACNNs.

5.1 Experimental settings

We perform experiments on six Euclidean and five non-Euclidean structured datasets to verify the
capability of SACNNs. Six Euclidean structured datasets include the Mnist [26], Cifar-10 [23],
Cifar-100 [23], STL-10 [8], Image10 [6], and ImageDog [6] image datasets. Five non-Euclidean
structured datasets contain the text categorization datasets 20NEWS and Reuters [25], the action
recognition dataset NTU [36], the molecular activity dataset DPP4 [20], and the taxi flow dataset
TF-198 [42] that consists of the taxis flow data at 198 traffic intersections in a city.

With respect to the scope of applications, two types of methods are compared, i.e., CNNs and GCNNs.
On Euclidean domains, popular CNN models, including the classical convolution (ClaCNNs) [26],
the separable convolution (SepCNNs) [7], the active convolution (ActCNNs) [19], and the deformable
convolution (DefCNNs) [9] are utilized for comparisons. On non-Euclidean domains, both spatial
and spectral GCNNs are taken as competitors to SACNNs, including the local connected networks
(LCNs) [4], the dynamic filters based networks (DFNs) [40], the edge-conditioned convolution
(ECC) [37], the mixture-model networks (MoNets) [31] (which is a generalization of the diffusion
CNNs [1], the anisotropic CNNs [2], and the geodesic CNNs [30]), the spectral networks (SCNs) [16],
the Chebyshev based SCNs (ChebNets) [10], and the graph convolution networks (GCNs) [22].
Furthermore, SACNNs† that omit the structure learning in SACNNs are used as a baseline of our
method and to show the effectiveness of structure learning. In SACNNs†,Ri is assigned by uniformly
sampling on [−1, 1], e.g.,Ri = {− 1

2 , 0,
1
2} is predefined when a 3-Dimensional filter is required.

The hyper-parameters in SACNNs are set as follows. In our experiments, the max pooling and the
Graclus method [11] are employed as the pooling operations to coarsen the feature maps in SACNNs
when managing Euclidean and non-Euclidean structured data respectively, the ReLU function [13]
is used as the activation function, batch normalization [17] is employed to normalize the inputs of
all layers, parameters are randomly initialized with a uniform distribution U(−0.1, 0.1), the order
of polynomials t is set to the maximum number of neighbors among the whole spatial domains
(e.g., t = 9 if we attempt to learn 3 × 3 filters in images). During the training stage, the Adam
optimizer [21] with the initial learning rate 0.001 is utilized to train SACNNs, the mini-batch size is
set to 32, the categorical cross entropy loss is used in the classification tasks, and the mean squared
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Table 1: The classification or clustering accuracies on the experimental Euclidean structured datasets.
For clarity, ‡ indicates that DAC [6] is used to cluster the whole samples in each experimental dataset.

Datasets Mnist Cifar-10 Cifar-100 STL-10 Image10‡ ImageDog‡ Time (s)

ClaCNNs [26] 0.9953 0.9075 0.6629 0.6635 0.5272 0.2748 53±1
SepCNNs [7] 0.9910 0.9062 0.6643 0.6685 0.5637 0.2754 68±1
ActCNNs [19] 0.9926 0.9086 0.6648 0.6761 0.5478 0.2786 83±2
DefCNNs [9] 0.9908 0.8718 0.6349 0.6564 0.4853 0.2355 125±3

SACNNs† 0.9957 0.9091 0.6759 0.7175 0.5953 0.2801 78±2
SACNNs 0.9961 0.9167 0.6938 0.7358 0.6007 0.2913 136±2
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Figure 2: Invariance properties of various CNNs. (a) Gaussion noises with mean 0 and variance δ.
(b) Rotation. (c) Shift. (d) Scale. (e) Normalized total variations at the initial stage. (f) Normalized
total variations at the final stage. Large figures can be found in the supplementary material.

error loss is used in the regression tasks. During the testing stage, the squared correlation and the
root mean square error are used to evaluate the results on DPP4 and TF-198 respectively, and the
classification or clustering accuracy is used for the others. For a reasonable evaluation, we perform 5
random restarts and the average results are used for comparisons.

5.2 Compared with various CNNs on Euclidean domains

To validate the capability of SACNNs on the Euclidean domains, several SACNNs are modeled
to classify images in Mnist, Cifar-10, Cifar-100 and STL-10, and to cluster images in Image10
and ImageDog based on the DAC model [6]. In this experiment, images are recast as specific
multi-channel graphs on 2-Dimensional regular grids. In the graphs, each vertex is provided with 9
neighbors including itself, which is similar to the classical convolution with a 3× 3 filter.

In Table 1, we report the quantitative results of the modeled networks with diverse convolution units
on various Euclidean structured datasets. Note that SACNNs achieve the superior performance on
both classification and clustering tasks, which implies that SACNNs and SACNNs† are capable of
managing Euclidean structured data effectively. In Figure 2, we empirically verify the invariance
property of the compared CNNs on the Mnist dataset. In this experiment, we disturb the testing
data in Mnist with four typical transformations, including Gaussion noise, rotation, shift, and scale.
Then, these disturbed data is utilized to validate the trained networks with the evaluated convolution
units. From Figure 2, the results assuredly prove that SACNNs and SACNNs† are in possession of
excellent robustness to such transformations. Furthermore, we analyze the learned filters via the
normalized total variation [33] that can reveal the smoothness of filters. Figure 2 (e) and (f) show that
smoother filters are obtained in SACNNs† at both initial and final stages. Based on the conclusion
in [33], higher deformation stability will be achieved when smoother filters are learned, which is in
agreement with the results of our experiments in Figure 2 (a)-(d).
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Table 2: The results on the experimental non-Euclidean structured datasets. For each dataset, ↑ (↓)
indicates that the larger (the smaller) values, the better results are.

Datasets Mnist↑ 20News↑ Reuters↑ NTU↑ DPP4↑ TF-198↓ Time (s)

LCNs [4] 0.9914 0.6491 0.9162 0.5457 0.225 68.83 175±2
DFNs [40] 0.9840 0.7017 0.9046 0.6346 0.214 70.35 192±3
ECC [37] 0.9937 0.7003 0.9114 0.6416 0.249 65.35 238±4
MoNets [31] 0.9919 0.6929 0.9113 0.6354 0.256 69.35 252±4
SCNs [16] 0.9726 0.6453 0.8985 0.5818 0.248 75.83 1384±11
ChebNets [10] 0.9914 0.6826 0.9124 0.6384 0.265 65.86 673±8
GCNs [22] 0.9867 0.6278 0.8992 0.5983 0.258 71.54 341±4

SACNNs† 0.9957 0.7362 0.9365 0.6844 0.279 58.82 78±2
SACNNs 0.9961 0.7436 0.9452 0.6931 0.285 53.72 136±2

5.3 Compared with diverse GCNNs on non-Euclidean domains

To verify the versatility of SACNNs for non-Euclidean structured data, we build SACNNs to classify
the texts in 20News and Reuters, recognize the skeleton-based actions in NTU, estimate the activities
of molecules in DPP4, and predict the taxis flows in TF-198, respectively. In addition, Mnist is also
used to see how these GCNNs perform on Euclidean structured data.

Table 2 gives the results in this experiment, which shows that SACNNs and SACNNs† outperform all
the compared methods with significant margins. In addition, we have several observations from the
table. First, dramatical improvements are achieved by SACNNs on both Euclidean and non-Euclidean
domains in numerous tasks. Such a good performance verifies that SACNNs can effectively deal
with data on different domains, without any human intervention. Second, Table 1, Table 2 and
Figure 2 consistently show that SACNNs always achieve better performance than SACNNs†. These
results empirically confirm that the local structure representation learning is capable of capturing the
significant structure information from data, thus improving the capability of SACNNs with only a few
additional learnable parameters. Furthermore, Table 1 and Table 2 report the time consumptions of
the evaluated methods when one epoch is executed on Mnist during training. From these tables, we
observe that SACNNs are obviously faster than the competitive GCNN methods. Compared with the
CNN methods, the timing cost of SACNNs is tolerably, which ensures the practicability of SACNNs.

5.4 Ablation study

In this subsection, we perform extensive ablation studies on diverse datasets to synthetically analyze
the developed SACNNs. Intuitively, all the results are illustrated in Figure 3. Due to the space
limitation, the learned filters in SACNNs are presented in the supplementary material.

Impact of polynomial order To show the impact of polynomial order t on the structure-aware
convolution, we select t from {5, 40, 80, 120, 160} to generate 11 × 11 filters to classify STL-10.
Figure 3 (a) illustrates the validation errors of SACNNs with different t. One can observe that the
performance generally improves if we increase the polynomial order t, then the performance will
saturate when filters can be well approximated, i.e., t ≥ 80 is satisfied. Moreover, it is worthy to
note that the developed SACNNs can utilize parameters more effectively than ClaCNNs. This is
empirically supported by the observation that SACNNs with only 40 parameters per filter can achieve
significant better performance than ClaCNNs with 11× 11 = 121 parameters per filter.

Influence of channels On the Cifar-10 dataset, we model SACNNs with different numbers of
channels c (i.e., 8, 16, 32) to study its influence on the local structure representations learning.
Specifically, we observe the following two tendencies from Figure 3 (b). The first one is that the
performance of both SACNNs and ClaCNNs benefits from the increase of the channel numbers. This
is reasonable since more parameters may improve the expressive capability of networks in general.
Second, our SACNNs work consistently better than ClaCNNs, especially when the channel number
is relatively large. One considerable reason is that more information can be exploited to model the
latent structure information to assist SACNNs achieving superior performance.
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Figure 3: Ablation studies on various datasets. (a) Impact of polynomial order. (b) Influence of
channels. (c) Transfer learning from Reuters to 20News. (d) Impact of training samples. (e) Influence
of basis functions. (f) Integration with recent networks. (g) Sensitivity to initialization. (h) Parameters
distribution. Large figures can be found in the supplementary material.

Transfer learning from Reuters to 20News To reveal the transferability of SACNNs, we fine-
tune the SACNNs that are pre-trained on Reuters (denoted as *SACNNs), with a small number of
labeled samples (i.e., 1k, 2k, 3k) in the 20News dataset. Figure 3 (c) shows that the pre-training on
Reuters can significantly elevate the performance of SACNNs on 20News and stabilize the training
process simultaneously, especially when labeled training samples are limited. This demonstrates that
SACNNs learned on a domain can be seamlessly transferred to similar domains.

Impact of training samples We randomly sample three sub-datasets with various sizes (i.e., 10k,
25k, 50k) from Cifar-100 to evaluate the impact of number of training samples on SACNNs. As
illustrated in Figure 3 (d), the performance of SACNNs improves when more training samples are
used. Furthermore, the superiority of our SACNNs against ClaCNNs holds on all these cases, which
means that SACNNs are capable of tackling machine learning tasks with both rich and limited data.

Influence of basis functions To investigate the influence of basis functions on SACNNs, the
Legendre polynomials are employed as basis functions to learn filters on Cifar-10. Similar to the
Chebyshev polynomials, the Legendre polynomial hk(x) of order k−1 (k ≥ 3) can be obtained based
on the recurrence relation hk(x) = 2k+1

k+1 hk−1(x)− k
k+1hk−2(x), with h1(x) = 1 and h2(x) = x.

From Figure 3 (e), almost the same training processes are generated in spite of diverse bases. The
slight mismatching may come from the randomness in training, e.g., random mini-batch selections.
This demonstrates that the learnability of SACNNs is robust to the basis functions.

Integration with recent networks A class of popular networks, i.e., ResNets [15], are employed
to survey the range of applications of our structure-aware convolution. The results in Figure 3 (f)
clearly indicate that better improvements will be achieved by replacing the classical convolution in
ResNets with the structure-aware convolution. This adequately validates that the structure-aware
convolution suffices to be applied to general ClaCNNs, not confined to simple and shallow networks.

Sensitivity to initialization We carry out an experiment on Mnist to contrastively analyze the
sensitivities to initializations in SACNNs and ClaCNNs. In this experiment, parameters in networks
are randomly initialized with a uniform distribution U(−α, α), where α is randomly selected from
[0, 1]. Figure 3 (g) illustrates the descending processes of loss functions in ClaCNNs and SACNNs,
indicating that SACNNs generally converge faster than ClaCNNs and are robust to initializations. A
possible reason is that the whole values in the generated discrete filters fRi = {f(rji)|eji ∈ E} can
be together modified by adjusting each coefficient of basis functions, which may yield more precise
gradients to accelerate and stabilize the training processes.

Parameters distribution Figure 3 (h) shows the distributions of parameters learned by ClaCNNs
and SACNNs on Mnist in ten convolutional layers. From the figure, we have the following two
observations. First, the parameters in both SACNNs and ClaCNNs have almost the same standard
deviations. Second, the expectations of parameters in SACNNs are more closer to 0 than ClaCNNs.
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These observations reveal that SACNNs have more sparse parameters than ClaCNNs. As a result,
more robust models will be achieved, which is in accordance with the results in Section 5.2.

6 Conclusion

We present a conceptually simple yet powerful structure-aware convolution to establish SACNNs.
In the structure-aware convolution, filters are represented via univariate functions, which suffice to
aggregate local inputs with diverse topological structures. By feat of the function approximation
theory, a numerical strategy is proposed to learn these filters in an effectively and efficiently way.
Furthermore, rather than using the predefined local structures of data, we incorporate them into the
structure-aware convolution to learn the underlying structure information from data automatically.
Extensive experimental results strongly demonstrate that the structure-aware convolution can be
equipped in SACNNs to learn high-level representations and latent structures for both Euclidean and
non-Euclidean structured data. In the future, we plan to systematically investigate the interpretability
of SACNNs based on their functional filters, i.e., univariate functions.
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