NIPS Proceedingsβ

Learning Identifiable Gaussian Bayesian Networks in Polynomial Time and Sample Complexity

Part of: Advances in Neural Information Processing Systems 30 (NIPS 2017)

[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Poster


Learning the directed acyclic graph (DAG) structure of a Bayesian network from observational data is a notoriously difficult problem for which many non-identifiability and hardness results are known. In this paper we propose a provably polynomial-time algorithm for learning sparse Gaussian Bayesian networks with equal noise variance --- a class of Bayesian networks for which the DAG structure can be uniquely identified from observational data --- under high-dimensional settings. We show that $O(k^4 \log p)$ number of samples suffices for our method to recover the true DAG structure with high probability, where $p$ is the number of variables and $k$ is the maximum Markov blanket size. We obtain our theoretical guarantees under a condition called \emph{restricted strong adjacency faithfulness} (RSAF), which is strictly weaker than strong faithfulness --- a condition that other methods based on conditional independence testing need for their success. The sample complexity of our method matches the information-theoretic limits in terms of the dependence on $p$. We validate our theoretical findings through synthetic experiments.