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Abstract

We propose an alternative framework to existing setups for controlling false alarms
when multiple A/B tests are run over time. This setup arises in many practical
applications, e.g. when pharmaceutical companies test new treatment options
against control pills for different diseases, or when internet companies test their
default webpages versus various alternatives over time. Our framework proposes to
replace a sequence of A/B tests by a sequence of best-arm MAB instances, which
can be continuously monitored by the data scientist. When interleaving the MAB
tests with an online false discovery rate (FDR) algorithm, we can obtain the best of
both worlds: low sample complexity and any time online FDR control. Our main
contributions are: (i) to propose reasonable definitions of a null hypothesis for
MAB instances; (ii) to demonstrate how one can derive an always-valid sequential
p-value that allows continuous monitoring of each MAB test; and (iii) to show that
using rejection thresholds of online-FDR algorithms as the confidence levels for
the MAB algorithms results in both sample-optimality, high power and low FDR
at any point in time. We run extensive simulations to verify our claims, and also
report results on real data collected from the New Yorker Cartoon Caption contest.

1 Introduction
Randomized trials are the default option to determine whether potential improvements of an alternative
method (e.g. website design for a tech company, or medication in clinical trials for pharmaceutical
companies) are significant compared to a well-established default. In the applied domain, this is often
colloquially referred to as A/B testing or A/B/n testing for several alternatives. The standard practice
is to divert a small amount of the traffic or patients to the alternative and control. If an alternative
appears to be significantly better, it is implemented; otherwise, the default setting is maintained.

At first glance, this procedure seems intuitive and simple. However, in cases where the aim is to
optimize over one particular metric, one can do better. In particular, this common tool suffers from
several downsides. (1) First, one may wish to allocate more traffic to a better treatment if it is clearly
better. Yet typical A/B/n testing frameworks split the traffic uniformly over alternatives. Adaptive
techniques should help to detect better alternatives faster. (2) Second, companies often desire to
continuously monitor an ongoing A/B test as they may adjust their termination criteria as time goes
by and possibly stop earlier or later than originally intended. However, this practice may result in
many more false alarms if not properly accounted for. This is one of the reasons for the lack of
reproducibility of scientific results, an issue recently receiving increased attention from the public
media. (3) Third, the lack of sufficient evidence or an insignificant improvement of the metric may
make it undesirable from a practical or financial perspective to replace the default. Therefore, when a
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company runs hundreds to thousands of A/B tests within a year, ideally the number of statistically
insignificant changes that it made should be small relative to the total number of changes made. While
controlling the false alarm rate of each individual test does not achieve this type of false discovery
rate (FDR) control, there are known procedures in the multiple testing literature that are tailored to
this problem.

In this paper, we provide a novel framework that addresses the above shortcomings of A/B or A/B/n
testing. The first concern is tackled by employing recent advances in adaptive sampling like the pure-
exploration multi-armed bandit (MAB) algorithm. For the second concern, we adopt the notion of
any-time p-values for guilt-free continuous monitoring. Finally, we handle the third issue using recent
results in online FDR control. Hence the combined framework can be described as doubly-sequential
(sequences of MAB tests, each of which is itself sequential). Although each of those problems
has been studied in hitherto disparate communities, how to leverage the best of all worlds, if at all
possible, has remained an open problem. The main contributions of this paper are in successfully
merging these ideas in a meta framework and presenting the conditions under which it can be shown
to yield near-optimal sample complexity and FDR control.

The remainder of this paper is organized as follows. In Section 2, we lay out the conceptual challenges
that we address in the paper, and describe a meta-algorithm that combines adaptive sampling strategies
with FDR control procedures. Section 3 is devoted to the description of a concrete procedure, along
with some theoretical guarantees on its properties. In Section 4, we discuss some results of our
extensive experiments on both simulated and real-world data sets available to us.

2 Formal experimental setup and a meta-algorithm
In this section provide a high-level overview of our proposed combined framework aimed at address-
ing the shortcomings mentioned in the introduction. A specific instantiation of this meta-algorithm
along with detailed theoretical guarantees are specified in Section 3.

For concreteness, we refer to the system designer, whether a tech company or a pharmaceutical
company, as a (data) scientist. We assume that the scientist needs to possibly conduct an infinite
number of experiments sequentially, indexed by j. Each experiment has one default setting, referred
to as the control, and K = K(j) alternative settings, called the treatments or alternatives. The
scientist must return one of the K + 1 options that is the “best” according to some predefined metric,
before the next experiment is started. Such a setup is a simple mathematical model both for clinical
trials run by pharmaceutical labs, and A/B/n testing used at scale by tech companies.

One full experiment consists of a sequence of steps. In each step, the scientist assigns a new person to
one of the K+ 1 options and observes an outcome. In practice, the role of the scientist could be taken
by an adaptive algorithm, which determines the assignment at time step j by careful consideration
of all previous outcomes. Borrowing terminology from the multi-armed bandit (MAB) literature,
we refer to each of the K + 1 options as an arm, and each assignment to arm i is termed “pulling
arm i”. For concreteness, we assign the index 0 to the control arm and note that it is known to the
algorithm. Furthermore, we assume that the observable metric from each pull of arm i = 0, 1, . . . ,K
corresponds to an independent draw from an unknown probability distribution with expectation µi.
In the sequel we use µi? := max

i=1,...,K
µi to denote the mean of the best arm. We refer the reader to

Table 1 in Appendix A for a glossary of the notation used throughout this paper.

2.1 Some desiderata and difficulties

Given the setup above, how can we mathematically describe the guarantees that the companies might
desire from an improved multiple-A/B/n testing framework? For which parts can we leverage known
results and what challenges remain?

For the purpose of addressing the first question, let us adopt terminology from the hypothesis testing
literature and view each experiment as a test of a null hypothesis. Any claim that an alternative arm is
the best is called a discovery, and when such a claim is erroneous, it is called a false discovery. When
multiple hypotheses are to be tested, the scientist needs to define the quantity it wants to control.
While we may desire that the probability of even a single false discovery is small, this is usually
far too stringent for a large and unknown number of tests and results in low power. For this reason,
[1] proposed that it may be more useful to control the expected ratio of false discoveries to the total
number of discoveries (called the False Discovery Rate, or FDR for short) or the ratio of expected
number of false discoveries to the expected number of total discoveries (called the modified FDR
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or mFDR for short). Over the past decades, the FDR and its variants like the mFDR have become
standard quantities for multiple testing applications. In the following, if not otherwise specified, we
use the term FDR to denote both measures in order to simplify the presentation. In Section 3, we
show that both mFDR and FDR can be controlled for different choices of procedures.

2.1.1 Challenges in viewing an MAB instance as a hypothesis test
In our setup, we want to be able to control the FDR at any time in an online manner. Online FDR
procedures were first introduced by Foster and Stine [2], and have since been studied by other authors
(e.g., [3, 4]). They are based on comparing a valid p-value P j with carefully-chosen levels αj for
each hypothesis test1. We reject the null hypothesis, represented as Rj = 1, when P j ≤ αj and we
set Rj = 0 otherwise.

As mentioned, we want to use adaptive MAB algorithms to test each hypothesis, since they can find a
best arm among K + 1 with near-optimal sample complexity. However the traditional MAB setup
does not account for the asymmetry between the arms as is the case in a testing setup, with one being
the default (control) and others being alternatives (treatments). This is the standard scenario in A/B/n
testing applications, as e.g. a company might prefer wrong claims that the control is the best (false
negative), rather than wrong claims that an alternative is the best (false positive), simply because new
system-wide adoption of selected alternatives might involve high costs. What would be a suitable
null hypothesis in this hybrid setting? For the sake of continuous monitoring, is it possible to define
and compute always-valid p-values that are super-uniformly distributed under the null hypothesis
when computed at any time t?

In addition to asymmetry, the practical scientist might have a different incentive than the ideal outcome
for MAB algorithms as he/she might not want to find the best alternative if it is not substantially
better than the control. Indeed, if the net gain is small, it might be offset by the cost of implementing
the change from the existing default choice. By similar reasoning, we may not require identifying
the single best arm if there is a set of arms with similar means all larger than the rest. We propose a
sensible null-hypothesis for each experiment which incorporates the approximation and minimum
improvement requirement as described above, and provide an always valid p-value which can be
easily calculated at each time step in the experiment. We show that a slight modification of the usual
LUCB algorithm caters to this specific null-hypothesis while still maintaining near-optimal sample
complexity.

MAB-FDR meta algorithm

𝛼𝛼𝑗𝑗 𝑅𝑅𝑗𝑗 (𝛼𝛼𝑗𝑗)

Exp j

MAB Test
𝑝𝑝𝑗𝑗 < 𝛼𝛼𝑗𝑗

𝑝𝑝𝑗𝑗 (𝛼𝛼𝑗𝑗)

𝛼𝛼j+1 𝑅𝑅j+1 (𝛼𝛼j+1)

Exp j+1

MAB Test
𝑝𝑝j+1 < 𝛼𝛼j+1

𝑝𝑝j+1 (𝛼𝛼j+1)

Online FDR procedure

……

desired FDR level 𝛼𝛼

Figure 1: Diagram of our MAB-FDR meta algorithm. The green solid arrows symbolize interaction
between the MAB and FDR procedures via the FDR test levels αj and rejection indicator variablesRj .
Notice that the P j-values are now dependent as each αj depends on the past rejections R1, . . . , Rj−1.
The eyes represent possible continuous monitoring by the scientist.

2.1.2 Interaction between MAB and FDR
In order to take advantage of the sample efficiency of best-arm bandit algorithms, it is crucial to set the
confidence levels close to what is needed. Given a user-defined level α, at each hypothesis j, online

1A valid P j must be stochastically dominated by a uniform distribution on [0, 1], which we henceforth refer
to as super-uniformly distributed.
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FDR procedures automatically output the significance level αj which are sufficient to guarantee FDR
control, based on past decisions. Can we directly set the MAB confidence levels to these output levels
αj? If we do, our p-values are not independent across different hypotheses anymore: P j directly
depends on the FDR levels αj and each αj in turn depends on past MAB rejections, thus on past
MAB p-values (see Figure 1). Does the new interaction compromise FDR guarantees?

Although known procedures as in [2, 4] guarantee FDR control for independent p-values, this does
not hold for dependent p-values in general. Hence FDR control guarantees cannot simply be obtained
out of the box. A key insight that emerges from our analysis is that an appropriate bandit algorithm
actually shapes the p-value distribution under the null in a “good” way that allows us to control FDR.

2.2 A meta-algorithm

Procedure 1 summarizes our doubly-sequential procedure, with a corresponding flowchart in Figure 1.
We will prove theoretical guarantees after instantiating the separate modules. Note that our framework
allows the scientist to plug in their favorite best-arm MAB algorithm or online FDR procedure. The
choice for each of them determines which guarantees can be proven for the entire setup. Any
independent improvement in either of the two parts would immediately lead to an overall performance
boost of the overall framework.

Procedure 1 MAB-FDR Meta algorithm skeleton

1. The scientist sets a desired FDR control rate α.
2. For each j = 1, 2, . . . :
• Experiment j receives a designated control arm and some number of alternative arms.
• An online-FDR procedure returns an αj that is some function of the past values {P `}j−1`=1 .
• An MAB procedure is executed with inputs (a) the control arm and K(j) alternative arms,

(b) confidence level αj , maintains an always valid p-value for each t and if the procedure
self-terminates, returns a recommended arm.

• When the MAB procedure is terminated at time t by itself or the user, if the arm with the
highest empirical mean is not the control arm and P jt ≤ αj , then we return P j := P jt ,
and the control arm is rejected in favor of this empirically best arm.

3 A concrete procedure with guarantees
We now take the high-level road map given in Procedure 1, and show that we can obtain a concrete,
practically implementable framework with FDR control and power guarantees. We first discuss the
key modeling decisions we have to make in order to seamlessly embed MAB algorithms into an
online FDR framework. We then outline a modified version of a commonly used best-arm algorithm,
before we finally prove FDR and power guarantees for the concrete combined procedure.

3.1 Defining null hypotheses and constructing p-values

Our first task is to define a null hypothesis for each experiment. As mentioned before, the choice of
the null is not immediately obvious, since we sample from multiple distributions adaptively instead
of independently. In particular, we will generally not have the same number of samples for all arms.
Given a default mean µ0 and alternatives means {µi}Ki=1, we propose that the null hypothesis for the
j-th experiment should be defined as

Hj
0 : µ0 ≥ µi − ε for all i = 1, . . . ,K, (1)

where we usually omit the index j for simplicity. It remains to define an always valid p-value
(previously defined by Johari et al. [5]) for each experiment for the purpose of continuous monitoring.
It is defined as a stochastic process {Pt}∞t=1 such that for all fixed and random stopping times T ,
under any distribution P0 over the arm rewards such that the null hypothesis is true, we have

P0(PT ≤ α) ≤ α. (2)

When all arms are drawn independently an equal number of times, by linearity of expectation one can
regard the distance of each pair of samples as a random variable drawn i.i.d. from a distribution with
mean µ̃ := µ0 − µi. We can then view the problem as testing the standard hypothesis Hj

0 : µ̃ > −ε.
However, when the arms are pulled adaptively, a different solution needs to be found—indeed, in this
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case, the sample means are not unbiased estimators of the true means, since the number of times an
arm was pulled now depends on the empirical means of all the arms.

Our strategy is to construct always valid p-values by using the fact that p-values can be obtained
by inverting confidence intervals. To construct always-valid confidence bounds, we resort to the
fundamental concept of the law of the iterated logarithm (LIL), for which non-asymptotic versions
have been recently derived and used for both bandits and testing problems (see [6], [7]).

To elaborate, define the function

ϕn(δ) =

√
log( 1

δ ) + 3 log(log( 1
δ )) + 3

2 log(log(en))

n
. (3)

If µ̂i,n is the empirical average of independent samples from a sub-Gaussian distribution, then it is
known (see, for instance, [8, Theorem 8]) that for all δ ∈ (0, 1), we have

max
{
P
( ∞⋃
n=1

{µ̂i,n − µi > ϕn(δ ∧ 0.1)}
)
, P

( ∞⋃
n=1

{µ̂i,n − µi < −ϕn(δ ∧ 0.1)}
)}
≤ δ, (4)

where δ ∧ 0.1 := min{δ, 0.1}.
We are now ready to propose single arm p-values of the form

Pi,t : = sup
{
γ ∈ [0, 1] | µ̂i,ni(t) − ϕni(t)(

γ
2K ) ≤ µ̂0,n0(t) + ϕn0(t)(

γ
2 ) + ε

}
(5)

= sup
{
γ ∈ [0, 1] | LCBi(t) ≤ UCB0(t) + ε

}
Here we set Pi,t = 1 if the supremum is taken over an empty set. Given these single arm p-values,
the always-valid p-value for the experiment is defined as

Pt := min
s≤t

min
i=1,...,K

Pi,s. (6)

We claim that this procedure leads to an always valid p-value (with proof in Appendix C).
Proposition 1. The sequence {Pt}∞t=1 defined via equation (6) is an always valid p-value.

3.2 Adaptive sampling for best-arm identification

In the traditional A/B testing setting described in the introduction, samples are allocated uniformly
to the different alternatives. But by allowing adaptivity, decisions can be made with the same
statistical significance using far fewer samples. Suppose moreover that there is a unique maximizer
i? := arg max

i=0,1,...,K
µi, so that ∆i := µi? − µi > 0 for all i 6= i?. Then for any δ ∈ (0, 1), best-arm

MAB algorithms can identify i? with probability at least 1−δ based on at most2
∑
i 6=i? ∆−2i log(1/δ)

total samples (see the paper [9] for a brief survey and [10] for an application to clinical trials). In
contrast, if samples are allocated uniformly to the alternatives under the same conditions, then the
most natural procedures require K max

i 6=i?
∆−2i log(K/δ) samples before returning i? with probability

at least 1− δ.

However, standard best-arm bandit algorithms do not incorporate asymmetry as induced by null-
hypotheses as in definition (1) by default. Furthermore, recall that a practical scientist might desire
the ability to incorporate approximation and a minimum improvement requirement. More precisely,
it is natural to consider the requirement that the returned arm ib satisfies the bounds µib ≥ µ0 + ε
and µib ≥ µi? − ε for some ε > 0. In Algorithm 1 we present a modified MAB algorithm based on
the common LUCB algorithm (see [11, 12]) which incorporates the above desiderata. We provide a
visualization of how ε affects the usual stopping condition in Figure 4 in Appendix A.1.

The following proposition applies to Algorithm 1 run with a control arm indexed by i = 0 with mean
µ0 and alternative arms indexed by i = 1, . . . ,K with means µi, respectively. Let ib denote the
random arm returned by the algorithm assuming that it exits, and define the set

S? := {i? 6= 0 | µi? ≥ max
i=1,...,K

µi − ε and µi? > µ0 + ε}. (7)

2Here we have ignored some doubly-logarithmic factors.
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Algorithm 1 Best-arm identification with a control arm for confidence δ and precision ε ≥ 0

For all t let ni(t) be the number of times arm i has been pulled up to time t. In addition, for each arm
i let µ̂i(t) = 1

ni(t)

∑ni(t)
τ=1 ri(τ), define

LCBi(t) := µ̂i,ni(t) − ϕni(t)(
δ

2K ) and UCBi(t) := µ̂i,ni(t) + ϕni(t)(
δ
2 ).

1. Set t = 1 and sample every arm once.
2. Repeat: Compute ht = arg max

i=0,1,...,K
µ̂i(t), and `t = arg max

i=0,1,...,K,i 6=ht

UCBi(t)

(a) If LCB0(t) > UCBi(t)− ε, for all i 6= 0, then output 0 and terminate.
Else if LCBht

(t) > UCB`t(t)− ε and LCBht
(t) > UCB0(t) + ε, then output ht and

terminate.
(b) If ε > 0, let ut = arg maxi 6=0 UCBi(t) and pull all distinct arms in {0, ut, ht, `t} once.

If ε = 0, pull arms ht and `t and set t = t+ 1.

Note that the mean associated with any index i? ∈ S?, assuming that the set is non-empty, is
guaranteed to be ε-superior to the control mean, and at most ε-inferior to the maximum mean over all
arms.

Proposition 2. The algorithm 1 terminates in finite time with probability one. Furthermore, suppose
that the samples from each arm are independent and sub-Gaussian with scale 1. Then for any
δ ∈ (0, 1) and ε ≥ 0, Algorithm 1 has the following guarantees:

(a) Suppose that µ0 > max
i=1,...,K

µi − ε. Then with probability at least 1− δ, the algorithm exits with

ib = 0 after taking at most O
(∑K

i=0 ∆̃−2i log(K log(∆̃−2i )/δ)
)

time steps with effective gaps

∆̃0 = (µ0 + ε)− max
j=1,...,K

µj and

∆̃i = (µ0 + ε)− µi.

(b) Otherwise, suppose that the set S? as defined in equation (7) is non-empty. Then with probability
at least 1− δ, the algorithm exits with ib ∈ S? after taking at most
O
(∑K

i=0 ∆̃−2i log(K log(∆̃−2i )/δ)
)

time steps with effective gaps

∆̃0 = min

{
max

j=1,...,K
µj − (µ0 + ε),max{∆0, ε}

}
and

∆̃i = max

{
∆i,min

{
max

j=1,...,K
µj − (µ0 + ε), ε

}}
.

See Appendix D for the proof of this claim. Part (a) of Proposition 2 guarantees that when no
alternative arm is ε-superior to the control arm (i.e. under the null hypothesis), the algorithm stops
and returns the control arm with probability at least 1− δ. Part (b) guarantees that if there is in fact at
least one alternative that is ε-superior to the control arm (i.e. under the alternative), then the algorithm
will find at least one of them that is at most ε-inferior to the best of all possible arms.

As our algorithm is a slight modification of the LUCB algorithm, the results of [11, 12] pro-
vide insight into the number of samples taken before the algorithm terminates. Indeed, when
ε = 0 and i? = arg maxi=0,1,...,K µi is a unique maximizer, the nearly optimal sample complex-
ity result of [12] implies that the algorithm terminates under settings (a) and (b) after at most
maxj 6=i? ∆−2j log(K log(∆−2j )/δ)+

∑
i 6=i? ∆−2i log(log(∆−2i )/δ) samples are taken (ignoring con-

stants), where ∆i = µi? − µi.
In our development to follow, we now bring back the index for experiment j, in particular using P j

to denote the quantity P jT at any stopping time T . Here the stopping time can either be defined by the
scientist, or in an algorithmic manner.

6



3.3 Best-arm MAB interacting with online FDR

After having established null hypotheses and p-values in the context of best-arm MAB algorithms, we
are now ready to embed them into an online FDR procedure. In the following, we consider p-values
for the j-th experiment P j := P jTj

which is just the p-value as defined in equation (6) at the stopping
time Tj , which depends on αj .

We denote the set of true null and false null hypotheses up to experiment J as H0(J) and H1(J)
respectively, where we drop the argument whenever it’s clear from the context. The variable
Rj = 1P j≤αj

indicates whether a the null hypothesis of experiment j has been rejected, where
Rj = 1 denotes a claimed discovery that an alternative was better than the control. The false
discovery rate (FDR) and modified FDR up to experiment J are then defined as

FDR(J) := E
∑
j∈H0

Rj∑J
i=1Ri ∨ 1

and mFDR(J) :=
E
∑
j∈H0

Rj

E
∑J
i=1Ri + 1

. (8)

Here the expectations are taken with respect to distributions of the arm pulls and the respective
sampling algorithm. In general, it is not true that control of one quantity implies control of the other.
Nevertheless, in the long run (when the law of large numbers is a good approximation), one does not
expect a major difference between the two quantities in practice.

The set of true nullsH0 thus includes all experiments where Hj
0 is true, and the FDR and mFDR are

well-defined for any number of experiments J , since we often desire to control FDR(J) or mFDR(J)
for all J ∈ N. In order to measure power, we define the ε-best-arm discovery rate as

εBDR(J) :=
E
∑
j∈H1

Rj1µib
≥µi?−ε1µib

≥µ0+ε

|H1(J)| (9)

We provide a concrete procedure 2 for our doubly sequential framework, where we use a particular
online FDR algorithm due to Javanmard and Montanari [4] known as LORD; the reader should note
that other online FDR procedure could be used to obtain essentially the same set of guarantees. Given
a desired level α, the LORD procedure starts off with an initial “α-wealth” of W (0) < α. Based on
a inifinite sequence {γi}∞i=1 that sums to one, and the time of the most recent discovery τj , it uses up
a fraction γj−τj of the remaining α-wealth to test. Whenever there is a rejection, we increase the
α-wealth by α−W (0). A feasible choice for a stopping time in practice is Tj := min{T (αj), TS},
where TS is a maximal number of samples the scientist wants to pull and T (αj) is the stopping time
of the best-arm MAB algorithm run at confidence αj .

Procedure 2 MAB-LORD: best-arm identification with online FDR control
1. Initialize W (0) < α, set τ0 = 0, and choose a sequence {γi} s.t.

∑∞
i=1 γi = 1

2. At each step j, compute αj = γj−τjW (τj) and
W (j + 1) = W (j)− αj +Rj(α−W (0))

3. Output αj and run Algorithm 1 using αj-confidence and stop at a stopping time Tj .

4. Algorithm 1 returns P j and we reject the null hypothesis if P j ≤ αj .
5. Set Rj = 1P j≤αj

, τj = τj−1 ∨ jRj , update j = j + 1 and go back to step 2.

The following theorem provides guarantees on mFDR and power for the MAB-LORD procedure.
Theorem 1 (Online mFDR control for MAB-LORD).
(a) Procedure 2 achieves mFDR control at level α for stopping times Tj = min{T (αj), TS}.
(b) Furthermore, if we set TS =∞, Procedure 2 satisfies

εBDR(J) ≥
∑J
j=1 1j∈H1

(1− αj)
|H1(J)| . (10)

See Appendix E for the proof of this claim. Note that by the arguments in the proof of Theorem 1,
mFDR control itself is actually guaranteed for any generalized α-investing procedure [3] combined
with any best-arm MAB algorithm. In fact we could use any adaptive stopping time Tj which depend
on the history only via the rejections R1, . . . , Rj−1. Furthermore, using a modified LORD proposed
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by Javanmard and Montanari [13], we can also guarantee FDR control– a result we moved to the
Appendix F due to space constraints. It is noteworthy that small values of α do not only guarantee
smaller FDR error but also higher BDR. However, there is no free lunch — a smaller α implies a
smaller αj at each experiment, resulting in a larger required number of pulls for the the best-arm
MAB algorithm.

4 Experimental results
In the following, we briefly describe some results of our experiments3 on both simulated and real-
world data sets, which illustrate that, apart from FDR control, MAB-FDR (used interchangeably with
MAB-LORD here) is highly advantageous in terms of sample complexity and power compared to a
straightforward embedding of A/B testing in online FDR procedures. Unless otherwise noted, we set
ε = 0 in all of our simulations to focus on the main ideas and keep the discussion concise.

Competing procedures There are two natural frameworks to compare against MAB-FDR. The
first, called AB-FDR or AB-LORD, swaps the MAB part for an A/B (i.e. A/B/n) test (uniformly
sampling all alternatives until termination). The second comparator exchanges the online FDR
control for independent testing at α for all hypotheses – we call this MAB-IND. Formally, AB-FDR
swaps step 3 in Procedure 2 with “Output αj and uniformly sample each arm until stopping time Tj .”
while MAB-IND swaps step 4 in Procedure 2 with “The algorithm returns P j and we reject the null
hypothesis if P j ≤ α.”. In order to compare the performances of these procedures, we ran three sets
of simulations using Procedure 2 with ε = 0 and γj = 0.07 log(j∨2)

je
√

log j as in [4].

Our experiments are run on artificial data with Gaussian/Bernoulli draws and real-world Bernoulli
draws from the New Yorker Cartoon Caption Contest. Recall that the sample complexity of the
best-arm MAB algorithm is determined by the gaps ∆j = µi? − µj . One of the main relevant
differences to consider between an experiment of artificial or real-world nature is thus the distribution
of the means µi for i = 1, . . . ,K. The artificial data simulations are run with a fixed gap ∆ := ∆2

while the means of the other arms are set uniformly in [0, µi? −∆]. For our real-world simulations,
we use empirical means computed from the cartoon caption contest (see details in Appendix B.1.1).
In addition, the contests actually follow a natural chronological order, which makes this dataset highly
relevant to our purposes. In all simulations, 60% of all the hypotheses are true nulls, and their indices
are chosen uniformly. Due to space constraints, the experimental results for artificial and real-world
Bernoulli draws are deferred to Appendix B.
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Figure 2: (a) Power vs. truncation time TS (per hypothesis) for 50 arms and (b) Sample complexity
vs. # arms for truncation time TS = 300 for Gaussian draws with fixed µi? = 8, ∆ = 3 over 500
hypotheses with 200 non-nulls, averaged over 100 runs and α = 0.1.

Power and sample complexity In this section we include figures on artificial Gaussian trials which
confirm that the total number of necessary pulls to determine significance is much smaller for MAB-
FDR than for AB-FDR. In Fig. 2 (a) we fix the number of arms and plot the εBDR with ε = 0 (BDR
for short) for both procedures over different choices of truncation times TS . Low BDR indicates that
the algorithm often reaches truncation time before it could stop. For Fig. 2 (b) we fix TS and show
how the sample complexity varies with the number of arms.

3The code for reproducing all experiments and plots in this paper is publicly available at
https://github.com/fanny-yang/MABFDR
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Observe in Fig. 2 (a) that the power at any given truncation time is much higher for MAB-FDR than
AB-FDR. This is because the best-arm MAB is more likely to satisfy the stopping criterion before
any given truncation time than the uniform sampling algorithm. Fig. 2(b) qualitatively shows how
the total number of necessary arm pulls for AB-FDR increases much faster with the number of arms
than for MAB-FDR before it plateaus due to the truncation. Recall that whenever the best-arm MAB
stops before the truncation time in each hypothesis, the stopping criterion is met, i.e. the best arm is
identified with probability at least 1− αj , so that the power is bound to be close to one whenever
Tj = T (αj).

mFDR control For Fig. 3, we again consider Gaussian draws as in Fig. 2. This time however, for
each true null hypothesis we skip the bandit experiment and directly draw P j ∼ [0, 1] to compare
with the significance levels αj from our online FDR procedure 2 (see App. B.2 for motivation of this
setting). By Theorem 1, mFDR should still be controlled as it only requires the p-values to be super-

uniform. In Fig. 3(a) we plot the instantaneous false discovery proportion FDP(J) =
∑

j∈H0J Rj∑T
j=1 Rj

over the hypothesis index for different runs with the same settings. Apart from initial fluctuations due
to the relatively small denominator, observe how the guarantee for the FDR(J) = E FDP(J) with
the red line showing its empirical value, transfers to the control of each individual run (blue lines).
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Figure 3: (a) Single runs of MAB-LORD (blue) and their average (red) with uniformly drawn p-values
for null hypotheses and Gaussian draws as in Figure 2. (b) mFDR over different proportions of
non-nulls π1, with same settings, averaged over 80 runs.

In Figure 3 (b), we compare the mFDR of MAB-FDR against MAB-IND and a Bonferroni type
correction. The latter uses a simple union bound and chooses αj = 6α

π2j2 such that
∑∞
j=1 αj ≤ α

and thus trivially allows for any time FWER, implying FDR control. As expected, Bonferroni is too
conservative and barely makes any rejections whereas the naive MAB-IND approach does not control
FDR. LORD avoids both extremes and controls FDR while having reasonable power.

5 Discussion
The recent focus in popular media about the lack of reproducibility of scientific results erodes the
public’s confidence in published scientific research. To maintain credibility of claimed discoveries,
simply decreasing the statistical significance levels α of each individual experimental work (e.g.,
reject at level 0.001 rather than 0.05) would drastically hurt power. A common approach is instead
to control the ratio of false discoveries to claimed discoveries at some desired value over many
sequential experiments, requiring the statistical significances αj to change from experiment to
experiment. Unlike earlier works on online FDR control, our framework synchronously interacts
with adaptive sampling methods like MABs to make the overall sampling procedure per experiment
much more efficient than uniform sampling. To the best of our knowledge, it is the first work that
successfully combines the benefits of adaptive sampling and FDR control. It is worthwhile to note that
any improvement, theoretical or practical, to either online FDR algorithms or best-arm identification
in MAB, immediately results in a corresponding improvement for our MAB-FDR framework.

More general notions of FDR with corresponding online procedures have recently been developed by
Ramdas et al [14]. In particular, they incorporate the notion of memory and a priori importance of
each hypothesis. This could prove to be a valuable extension for our setting, especially in cases when
only the percentage of wrong rejections in the recent past matters. It would be useful to establish
FDR control for these generalized notions of FDR as well.
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