
Task-based End-to-end Model Learning
in Stochastic Optimization

Priya L. Donti
Dept. of Computer Science

Dept. of Engr. & Public Policy
Carnegie Mellon University

Pittsburgh, PA 15213
pdonti@cs.cmu.edu

Brandon Amos
Dept. of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
bamos@cs.cmu.edu

J. Zico Kolter
Dept. of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
zkolter@cs.cmu.edu

Abstract

With the increasing popularity of machine learning techniques, it has become com-
mon to see prediction algorithms operating within some larger process. However,
the criteria by which we train these algorithms often differ from the ultimate crite-
ria on which we evaluate them. This paper proposes an end-to-end approach for
learning probabilistic machine learning models in a manner that directly captures
the ultimate task-based objective for which they will be used, within the context
of stochastic programming. We present three experimental evaluations of the pro-
posed approach: a classical inventory stock problem, a real-world electrical grid
scheduling task, and a real-world energy storage arbitrage task. We show that the
proposed approach can outperform both traditional modeling and purely black-box
policy optimization approaches in these applications.

1 Introduction

While prediction algorithms commonly operate within some larger process, the criteria by which
we train these algorithms often differ from the ultimate criteria on which we evaluate them: the
performance of the full “closed-loop” system on the ultimate task at hand. For instance, instead of
merely classifying images in a standalone setting, one may want to use these classifications within
planning and control tasks such as autonomous driving. While a typical image classification algorithm
might optimize accuracy or log likelihood, in a driving task we may ultimately care more about the
difference between classifying a pedestrian as a tree vs. classifying a garbage can as a tree. Similarly,
when we use a probabilistic prediction algorithm to generate forecasts of upcoming electricity demand,
we then want to use these forecasts to minimize the costs of a scheduling procedure that allocates
generation for a power grid. As these examples suggest, instead of using a “generic loss,” we instead
may want to learn a model that approximates the ultimate task-based “true loss.”

This paper considers an end-to-end approach for learning probabilistic machine learning models
that directly capture the objective of their ultimate task. Formally, we consider probabilistic models
in the context of stochastic programming, where the goal is to minimize some expected cost over
the models’ probabilistic predictions, subject to some (potentially also probabilistic) constraints.
As mentioned above, it is common to approach these problems in a two-step fashion: first to fit a
predictive model to observed data by minimizing some criterion such as negative log-likelihood,
and then to use this model to compute or approximate the necessary expected costs in the stochastic
programming setting. While this procedure can work well in many instances, it ignores the fact
that the true cost of the system (the optimization objective evaluated on actual instantiations in the
real world) may benefit from a model that actually attains worse overall likelihood, but makes more
accurate predictions over certain manifolds of the underlying space.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

We propose to train a probabilistic model not (solely) for predictive accuracy, but so that–when it is
later used within the loop of a stochastic programming procedure–it produces solutions that minimize
the ultimate task-based loss. This formulation may seem somewhat counterintuitive, given that a
“perfect” predictive model would of course also be the optimal model to use within a stochastic
programming framework. However, the reality that all models do make errors illustrates that we
should indeed look to a final task-based objective to determine the proper error tradeoffs within a
machine learning setting. This paper proposes one way to evaluate task-based tradeoffs in a fully
automated fashion, by computing derivatives through the solution to the stochastic programming
problem in a manner that can improve the underlying model.

We begin by presenting background material and related work in areas spanning stochastic program-
ming, end-to-end training, and optimizing alternative loss functions. We then describe our approach
within the formal context of stochastic programming, and give a generic method for propagating task
loss through these problems in a manner that can update the models. We report on three experimental
evaluations of the proposed approach: a classical inventory stock problem, a real-world electrical grid
scheduling task, and a real-world energy storage arbitrage task. We show that the proposed approach
outperforms traditional modeling and purely black-box policy optimization approaches.

2 Background and related work

Stochastic programming Stochastic programming is a method for making decisions under un-
certainty by modeling or optimizing objectives governed by a random process. It has applications
in many domains such as energy [1], finance [2], and manufacturing [3], where the underlying
probability distributions are either known or can be estimated. Common considerations include how
to best model or approximate the underlying random variable, how to solve the resulting optimization
problem, and how to then assess the quality of the resulting (approximate) solution [4].

In cases where the underlying probability distribution is known but the objective cannot be solved
analytically, it is common to use Monte Carlo sample average approximation methods, which
draw multiple iid samples from the underlying probability distribution and then use deterministic
optimization methods to solve the resultant problems [5]. In cases where the underlying distribution
is not known, it is common to learn or estimate some model from observed samples [6].

End-to-end training Recent years have seen a dramatic increase in the number of systems building
on so-called “end-to-end” learning. Generally speaking, this term refers to systems where the end
goal of the machine learning process is directly predicted from raw inputs [e.g. 7, 8]. In the context
of deep learning systems, the term now traditionally refers to architectures where, for example, there
is no explicit encoding of hand-tuned features on the data, but the system directly predicts what the
image, text, etc. is from the raw inputs [9, 10, 11, 12, 13]. The context in which we use the term
end-to-end is similar, but slightly more in line with its older usage: instead of (just) attempting to learn
an output (with known and typically straightforward loss functions), we are specifically attempting to
learn a model based upon an end-to-end task that the user is ultimately trying to accomplish. We feel
that this concept–of describing the entire closed-loop performance of the system as evaluated on the
real task at hand–is beneficial to add to the notion of end-to-end learning.

Also highly related to our work are recent efforts in end-to-end policy learning [14], using value
iteration effectively as an optimization procedure in similar networks [15], and multi-objective
optimization [16, 17, 18, 19]. These lines of work fit more with the “pure” end-to-end approach
we discuss later on (where models are eschewed for pure function approximation methods), but
conceptually the approaches have similar motivations in modifying typically-optimized policies to
address some task(s) directly. Of course, the actual methodological approaches are quite different,
given our specific focus on stochastic programming as the black box of interest in our setting.

Optimizing alternative loss functions There has been a great deal of work in recent years on
using machine learning procedures to optimize different loss criteria than those “naturally” optimized
by the algorithm. For example, Stoyanov et al. [20] and Hazan et al. [21] propose methods for
optimizing loss criteria in structured prediction that are different from the inference procedure of
the prediction algorithm; this work has also recently been extended to deep networks [22]. Recent
work has also explored using auxiliary prediction losses to satisfy multiple objectives [23], learning

2

dynamics models that maximize control performance in Bayesian optimization [24], and learning
adaptive predictive models via differentiation through a meta-learning optimization objective [25].

The work we have found in the literature that most closely resembles our approach is the work of
Bengio [26], which uses a neural network model for predicting financial prices, and then optimizes the
model based on returns obtained via a hedging strategy that employs it. We view this approach–of both
using a model and then tuning that model to adapt to a (differentiable) procedure–as a philosophical
predecessor to our own work. In concurrent work, Elmachtoub and Grigas [27] also propose
an approach for tuning model parameters given optimization results, but in the context of linear
programming and outside the context of deep networks. Whereas Bengio [26] and Elmachtoub and
Grigas [27] use hand-crafted (but differentiable) algorithms to approximately attain some objective
given a predictive model, our approach is tightly coupled to stochastic programming, where the
explicit objective is to attempt to optimize the desired task cost via an exact optimization routine, but
given underlying randomness. The notions of stochasticity are thus naturally quite different in our
work, but we do hope that our work can bring back the original idea of task-based model learning.
(Despite Bengio [26]’s original paper being nearly 20 years old, virtually all follow-on work has
focused on the financial application, and not on what we feel is the core idea of using a surrogate
model within a task-driven optimization procedure.)

3 End-to-end model learning in stochastic programming

We first formally define the stochastic modeling and optimization problems with which we are
concerned. Let (x 2 X , y 2 Y) ⇠ D denote standard input-output pairs drawn from some
(real, unknown) distribution D. We also consider actions z 2 Z that incur some expected loss
LD(z) = E

x,y⇠D[f(x, y, z)]. For instance, a power systems operator may try to allocate power
generators z given past electricity demand x and future electricity demand y; this allocation’s loss
corresponds to the over- or under-generation penalties incurred given future demand instantiations.

If we knew D, then we could select optimal actions z?D = argmin

z

LD(z). However, in practice,
the true distribution D is unknown. In this paper, we are interested in modeling the conditional
distribution y|x using some parameterized model p(y|x; ✓) in order to minimize the real-world cost of
the policy implied by this parameterization. Specifically, we find some parameters ✓ to parameterize
p(y|x; ✓) (as in the standard statistical setting) and then determine optimal actions z

?

(x; ✓) (via
stochastic optimization) that correspond to our observed input x and the specific choice of parameters
✓ in our probabilistic model. Upon observing the costs of these actions z

?

(x; ✓) relative to true
instantiations of x and y, we update our parameterized model p(y|x; ✓) accordingly, calculate the
resultant new z

?

(x; ✓), and repeat. The goal is to find parameters ✓ such that the corresponding policy
z

?

(x; ✓) optimizes the loss under the true joint distribution of x and y.

Explicitly, we wish to choose ✓ to minimize the task loss L(✓) in the context of x, y ⇠ D, i.e.

minimize

✓

L(✓) = E
x,y⇠D[f(x, y, z

?

(x; ✓))]. (1)

Since in reality we do not know the distribution D, we obtain z

?

(x; ✓) via a proxy stochastic
optimization problem for a fixed instantiation of parameters ✓, i.e.

z

?

(x; ✓) = argmin

z

E
y⇠p(y|x;✓)[f(x, y, z)]. (2)

The above setting specifies z?(x; ✓) using a simple (unconstrained) stochastic program, but in reality
our decision may be subject to both probabilistic and deterministic constraints. We therefore consider
more general decisions produced through a generic stochastic programming problem1

z

?

(x; ✓) = argmin

z

E
y⇠p(y|x;✓)[f(x, y, z)]

subject to E
y⇠p(y|x;✓)[gi(x, y, z)] 0, i = 1, . . . , n

ineq

h

i

(z) = 0, i = 1, . . . , n

eq

.

(3)

1It is standard to presume in stochastic programming that equality constraints depend only on decision
variables (not random variables), as non-trivial random equality constraints are typically not possible to satisfy.

3

In this setting, the full task loss is more complex, since it captures both the expected cost and any
deviations from the constraints. We can write this, for instance, as

L(✓) = E
x,y⇠D[f(x, y, z?(x; ✓))]+

nineqX

i=1

I{E
x,y⇠D[g

i

(x, y, z?(x; ✓))] 0}+
neqX

i=1

E
x

[I{h
i

(z?(x; ✓)) = 0}]

(4)
(where I(·) is the indicator function that is zero when its constraints are satisfied and infinite other-
wise). However, the basic intuition behind our approach remains the same for both the constrained
and unconstrained cases: in both settings, we attempt to learn parameters of a probabilistic model not
to produce strictly “accurate” predictions, but such that when we use the resultant model within a
stochastic programming setting, the resulting decisions perform well under the true distribution.

Actually solving this problem requires that we differentiate through the “argmin” operator z?(x; ✓)
of the stochastic programming problem. This differentiation is not possible for all classes of opti-
mization problems (the argmin operator may be discontinuous), but as we will show shortly, in many
practical cases–including cases where the function and constraints are strongly convex–we can indeed
efficiently compute these gradients even in the context of constrained optimization.

3.1 Discussion and alternative approaches

We highlight our approach in contrast to two alternative existing methods: traditional model learning
and model-free black-box policy optimization. In traditional machine learning approaches, it is
common to use ✓ to minimize the (conditional) log-likelihood of observed data under the model
p(y|x; ✓). This method corresponds to approximately solving the optimization problem

minimize

✓

E
x,y⇠D [� log p(y|x; ✓)] . (5)

If we then need to use the conditional distribution y|x to determine actions z within some later
optimization setting, we commonly use the predictive model obtained from (5) directly. This
approach has obvious advantages, in that the model-learning phase is well-justified independent of
any future use in a task. However, it is also prone to poor performance in the common setting where
the true distribution y|x cannot be represented within the class of distributions parameterized by ✓, i.e.
where the procedure suffers from model bias. Conceptually, the log-likelihood objective implicitly
trades off between model error in different regions of the input/output space, but does so in a manner
largely opaque to the modeler, and may ultimately not employ the correct tradeoffs for a given task.

In contrast, there is an alternative approach to solving (1) that we describe as the model-free
“black-box” policy optimization approach. Here, we forgo learning any model at all of the ran-
dom variable y. Instead, we attempt to learn a policy mapping directly from inputs x to actions
z

?

(x;

¯

✓) that minimize the loss L(

¯

✓) presented in (4) (where here ¯

✓ defines the form of the pol-
icy itself, not a predictive model). While such model-free methods can perform well in many
settings, they are often very data-inefficient, as the policy class must have enough representa-
tional power to describe sufficiently complex policies without recourse to any underlying model.2

Algorithm 1 Task Loss Optimization
1: input: D // samples from true distribution
2: initialize ✓ // some initial parameterization

3: for t = 1, . . . , T do
4: sample (x, y) ⇠ D
5: compute z

?

(x; ✓) via Equation (3)

6: // step in violated constraint or objective
7: if 9i s.t. g

i

(x, y, z

?

(x; ✓)) > 0 then
8: update ✓ with r

✓

g

i

(x, y, z

?

(x; ✓))

9: else
10: update ✓ with r

✓

f(x, y, z

?

(x; ✓))

11: end if
12: end for

Our approach offers an intermediate setting,
where we do still use a surrogate model to deter-
mine an optimal decision z

?

(x; ✓), yet we adapt
this model based on the task loss instead of any
model prediction accuracy. In practice, we typi-
cally want to minimize some weighted combina-
tion of log-likelihood and task loss, which can
be easily accomplished given our approach.

3.2 Optimizing task loss

To solve the generic optimization problem (4),
we can in principle adopt a straightforward (con-
strained) stochastic gradient approach, as de-
tailed in Algorithm 1. At each iteration, we

2This distinction is roughly analogous to the policy search vs. model-based settings in reinforcement learning.
However, for the purposes of this paper, we consider much simpler stochastic programs without the multiple
rounds that occur in RL, and the extension of these techniques to a full RL setting remains as future work.

4

Pred. demand
(uncertain; discrete)
≡ "($|&; ()

≡ & ∈ ℝ,

Features
(randomly
generated)

Newspaper
stocking
decision

≡ - ∈ ℝ
1 2 5 10 20

(

(a) Inventory stock problem

Past demand,
past temperature,
temporal features Pred. demand

(w/ uncertainty)

Generation
schedule (e.g.)

≡ "($|&; ()

≡ -

≡ &

Pr
es

en
t

(

(b) Load forecasting problem

(≡ &

Pred. prices
(w/ uncertainty)
≡ "($|&; ()

Battery
schedule (e.g.)

≡ -

Pr
es

en
t

Past prices,
past temperature,
temporal features,
load forecasts

(c) Price forecasting problem

Figure 1: Features x, model predictions y, and policy z for the three experiments.

solve the proxy stochastic programming problem (3) to obtain z

?

(x, ✓), using the distribution defined
by our current values of ✓. Then, we compute the true loss L(✓) using the observed value of y.
If any of the inequality constraints g

i

in L(✓) are violated, we take a gradient step in the violated
constraint; otherwise, we take a gradient step in the optimization objective f . We note that if any
inequality constraints are probabilistic, Algorithm 1 must be adapted to employ mini-batches in order
to determine whether these probabilistic constraints are satisfied. Alternatively, because even the g

i

constraints are probabilistic, it is common in practice to simply move a weighted version of these
constraints to the objective, i.e., we modify the objective by adding some appropriate penalty times
the positive part of the function, �g

i

(x, y, z)+, for some � > 0. In practice, this has the effect of
taking gradient steps jointly in all the violated constraints and the objective in the case that one or
more inequality constraints are violated, often resulting in faster convergence. Note that we need
only move stochastic constraints into the objective; deterministic constraints on the policy itself will
always be satisfied by the optimizer, as they are independent of the model.

3.3 Differentiating the optimization solution to a stochastic programming problem

While the above presentation highlights the simplicity of the proposed approach, it avoids the issue
of chief technical challenge to this approach, which is computing the gradient of an objective that
depends upon the argmin operation z

?

(x; ✓). Specifically, we need to compute the term
@L

@✓

=

@L

@z

?

@z

?

@✓

(6)

which involves the Jacobian @z

?

@✓

. This is the Jacobian of the optimal solution with respect to the
distribution parameters ✓. Recent approaches have looked into similar argmin differentiations [28, 29],
though the methodology we present here is more general and handles the stochasticity of the objective.

At a high level, we begin by writing the KKT optimality conditions of the general stochastic
programming problem (3). Differentiating these equations and applying the implicit function theorem
gives a set of linear equations that we can solve to obtain the necessary Jacobians (with expectations
over the distribution y ⇠ p(y|x; ✓) denoted E

y✓ , and where g is the vector of inequality constraints)
2

64
r2

z

E
y✓f(z) +

nineqX

i=1

�

i

r2
z

E
y✓gi(z) (r

z

E
y✓g(z))

T

A

T

diag(�) (r
z

E
y✓g(z)) diag(E

y✓g(z)) 0

A 0 0

3

75

2

64

@z

@✓

@�

@✓

@⌫

@✓

3

75 =

2

64

@rzEy✓
f(z)

@✓

+

@

Pnineq
i=1 �irzEy✓

gi(z)

@✓

diag(�)

@Ey✓
g(z)

@✓

0

3

75 .

(7)
The terms in these equations look somewhat complex, but fundamentally, the left side gives the
optimality conditions of the convex problem, and the right side gives the derivatives of the relevant
functions at the achieved solution with respect to the governing parameter ✓. In practice, we calculate
the right-hand terms by employing sequential quadratic programming [30] to find the optimal policy
z

?

(x; ✓) for the given parameters ✓, using a recently-proposed approach for fast solution of the argmin
differentiation for QPs [31] to solve the necessary linear equations; we then take the derivatives at the
optimum produced by this strategy. Details of this approach are described in the appendix.

4 Experiments

We consider three applications of our task-based method: a synthetic inventory stock problem, a
real-world energy scheduling task, and a real-world battery arbitrage task. We demonstrate that the
task-based end-to-end approach can substantially improve upon other alternatives. Source code for
all experiments is available at https://github.com/locuslab/e2e-model-learning.

5

https://github.com/locuslab/e2e-model-learning

4.1 Inventory stock problem

Problem definition To highlight the performance of the algorithm in a setting where the true
underlying model is known to us, we consider a “conditional” variation of the classical inventory
stock problem [4]. In this problem, a company must order some quantity z of a product to minimize
costs over some stochastic demand y, whose distribution in turn is affected by some observed features
x (Figure 1a). There are linear and quadratic costs on the amount of product ordered, plus different
linear/quadratic costs on over-orders [z � y]+ and under-orders [y � z]+. The objective is given by

f

stock

(y, z) = c0z +
1

2

q0z
2
+ c

b

[y � z]+ +

1

2

q

b

([y � z]+)
2
+ c

h

[z � y]+ +

1

2

q

h

([z � y]+)
2
, (8)

where [v]+ ⌘ max{v, 0}. For a specific choice of probability model p(y|x; ✓), our proxy stochastic
programming problem can then be written as

minimize

z

E
y⇠p(y|x;✓)[fstock(y, z)]. (9)

To simplify the setting, we further assume that the demands are discrete, taking on values d1, . . . , dk
with probabilities (conditional on x) (p

✓

)

i

⌘ p(y = d

i

|x; ✓). Thus our stochastic programming
problem (9) can be written succinctly as a joint quadratic program3

minimize

z2R,zb,zh2Rk
c0z +

1

2

q0z
2
+

kX

i=1

(p

✓

)

i

✓
c

b

(z

b

)

i

+

1

2

q

b

(z

b

)

2
i

+ c

h

(z

h

)

i

+

1

2

q

h

(z

h

)

2
i

◆

subject to d� z1 z

b

, z1� d z

h

, z, z

h

, z

b

� 0.

(10)

Further details of this approach are given in the appendix.

Experimental setup We examine our algorithm under two main conditions: where the true model
is linear, and where it is nonlinear. In all cases, we generate problem instances by randomly sampling
some x 2 Rn and then generating p(y|x; ✓) according to either p(y|x; ✓) / exp(⇥

T

x) (linear true
model) or p(y|x; ✓) / exp((⇥

T

x)

2
) (nonlinear true model) for some ⇥ 2 Rn⇥k. We compare the

following approaches on these tasks: 1) the QP allocation based upon the true model (which performs
optimally); 2) MLE approaches (with linear or nonlinear probability models) that fit a model to
the data, and then compute the allocation by solving the QP; 3) pure end-to-end policy-optimizing
models (using linear or nonlinear hypotheses for the policy); and 4) our task-based learning models
(with linear or nonlinear probability models). In all cases, we evaluate test performance by running
on 1000 random examples, and evaluate performance over 10 folds of different true ✓

? parameters.

Figures 2(a) and (b) show the performance of these methods given a linear true model, with linear
and nonlinear model hypotheses, respectively. As expected, the linear MLE approach performs best,
as the true underlying model is in the class of distributions that it can represent and thus solving the
stochastic programming problem is a very strong proxy for solving the true optimization problem
under the real distribution. While the true model is also contained within the nonlinear MLE’s generic
nonlinear distribution class, we see that this method requires more data to converge, and when given
less data makes error tradeoffs that are ultimately not the correct tradeoffs for the task at hand; our
task-based approach thus outperforms this approach. The task-based approach also substantially
outperforms the policy-optimizing neural network, highlighting the fact that it is more data-efficient
to run the learning process “through” a reasonable model. Note that here it does not make a difference
whether we use the linear or nonlinear model in the task-based approach.

Figures 2(c) and (d) show performance in the case of a nonlinear true model, with linear and
nonlinear model hypotheses, respectively. Case (c) represents the “non-realizable” case, where the
true underlying distribution cannot be represented by the model hypothesis class. Here, the linear
MLE, as expected, performs very poorly: it cannot capture the true underlying distribution, and thus
the resultant stochastic programming solution would not be expected to perform well. The linear
policy model similarly performs poorly. Importantly, the task-based approach with the linear model
performs much better here: despite the fact that it still has a misspecified model, the task-based
nature of the learning process lets us learn a different linear model than the MLE version, which is

3This is referred to as a two-stage stochastic programming problem (though a very trivial example of one),
where first stage variables consist of the amount of product to buy before observing demand, and second-stage
variables consist of how much to sell back or additionally purchase once the true demand has been revealed.

6

Figure 2: Inventory problem results for 10 runs over a representative instantiation of true parameters
(c0 = 10, q0 = 2, c

b

= 30, q

b

= 14, c

h

= 10, q

h

= 2). Cost is evaluated over 1000 testing samples
(lower is better). The linear MLE performs best for a true linear model. In all other cases, the
task-based models outperform their MLE and policy counterparts.

particularly tuned to the distribution and loss of the task. Finally, also as to be expected, the non-linear
models perform better than the linear models in this scenario, but again with the task-based non-linear
model outperforming the nonlinear MLE and end-to-end policy approaches.

4.2 Load forecasting and generator scheduling

We next consider a more realistic grid-scheduling task, based upon over 8 years of real electrical
grid data. In this setting, a power system operator must decide how much electricity generation
z 2 R24 to schedule for each hour in the next 24 hours based on some (unknown) distribution over
electricity demand (Figure 1b). Given a particular realization y of demand, we impose penalties for
both generation excess (�

e

) and generation shortage (�
s

), with �

s

� �

e

. We also add a quadratic
regularization term, indicating a preference for generation schedules that closely match demand
realizations. Finally, we impose a ramping constraint c

r

restricting the change in generation between
consecutive timepoints, reflecting physical limitations associated with quick changes in electricity
output levels. These are reasonable proxies for the actual economic costs incurred by electrical grid
operators when scheduling generation, and can be written as the stochastic programming problem

minimize

z2R24

24X

i=1

E
y⇠p(y|x;✓)

�

s

[y

i

� z

i

]+ + �

e

[z

i

� y

i

]+ +

1

2

(z

i

� y

i

)

2

�

subject to |z
i

� z

i�1| c

r

8i,
(11)

where [v]+ ⌘ max{v, 0}. Assuming (as we will in our model), that y
i

is a Gaussian random
variable with mean µ

i

and variance �

2
i

, then this expectation has a closed form that can be computed
via analytically integrating the Gaussian PDF.4 We then use sequential quadratic programming
(SQP) to iteratively approximate the resultant convex objective as a quadratic objective, iterate until
convergence, and then compute the necessary Jacobians using the quadratic approximation at the
solution, which gives the correct Hessian and gradient terms. Details are given in the appendix.

To develop a predictive model, we make use of a highly-tuned load forecasting methodology. Specifi-
cally, we input the past day’s electrical load and temperature, the next day’s temperature forecast,
and additional features such as non-linear functions of the temperatures, binary indicators of week-
ends or holidays, and yearly sinusoidal features. We then predict the electrical load over all 24

4 Part of the philosophy behind applying this approach here is that we know the Gaussian assumption
is incorrect: the true underlying load is neither Gaussian distributed nor homoskedastic. However, these
assumptions are exceedingly common in practice, as they enable easy model learning and exact analytical
solutions. Thus, training the (still Gaussian) system with a task-based loss retains computational tractability
while still allowing us to modify the distribution’s parameters to improve actual performance on the task at hand.

7

Figure 4: Results for 10 runs of the generation-scheduling problem for representative decision
parameters �

e

= 0.5, �

s

= 50, and c

r

= 0.4. (Lower loss is better.) As expected, the RMSE net
achieves the lowest RMSE for its predictions. However, the task net outperforms the RMSE net on
task loss by 38.6%, and the cost-weighted RMSE on task loss by 8.6%.

hours of the next day. We employ a 2-hidden-layer neural network for this purpose, with an addi-
tional residual connection from the inputs to the outputs initialized to the linear regression solution.

! ∈ ℝ$

200

% ∈ ℝ&'

Past Load
Past Temp

(Past Temp)2

Future Temp
(Future Temp)2

(Future Temp)3

((Weekday)
((Holiday)
((DST)

sin(2-.× DOY)
cos(2-× DOY)

Future Load

200

Figure 3: 2-hidden-layer neural network to
predict hourly electric load for the next day.

An illustration of the architecture is shown in Fig-
ure 3. We train the model to minimize the mean
squared error between its predictions and the actual
load (giving the mean prediction µ

i

), and compute
�

2
i

as the (constant) empirical variance between the
predicted and actual values. In all cases we use 7
years of data to train the model, and 1.75 subsequent
years for testing.

Using the (mean and variance) predictions of this
base model, we obtain z

?

(x; ✓) by solving the gen-
erator scheduling problem (11) and then adjusting
network parameters to minimize the resultant task
loss. We compare against a traditional stochastic
programming model that minimizes just the RMSE,
as well as a cost-weighted RMSE that periodically
reweights training samples given their task loss.5 (A

pure policy-optimizing network is not shown, as it could not sufficiently learn the ramp constraints.
We could not obtain good performance for the policy optimizer even ignoring this infeasibility.)

Figure 4 shows the performance of the three models. As expected, the RMSE model performs
best with respect to the RMSE of its predictions (its objective). However, the task-based model
substantially outperforms the RMSE model when evaluated on task loss, the actual objective that
the system operator cares about: specifically, we improve upon the performance of the traditional
stochastic programming method by 38.6%. The cost-weighted RMSE’s performance is extremely
variable, and overall, the task net improves upon this method by 8.6%.

4.3 Price forecasting and battery storage

Finally, we consider a battery arbitrage task, based upon 6 years of real electrical grid data. Here, a
grid-scale battery must operate over a 24 hour period based on some (unknown) distribution over
future electricity prices (Figure 1c). For each hour, the operator must decide how much to charge
(zin 2 R24) or discharge (zout 2 R24) the battery, thus inducing a particular state of charge in the
battery (zstate 2 R24). Given a particular realization y of prices, the operator optimizes over: 1)
profits, 2) flexibility to participate in other markets, by keeping the battery near half its capacity B

(with weight �), and 3) battery health, by discouraging rapid charging/discharging (with weight ✏,

5It is worth noting that a cost-weighted RMSE approach is only possible when direct costs can be assigned
independently to each decision point, i.e. when costs do not depend on multiple decision points (as in this
experiment). Our task-based method, however, accommodates the (typical) more general setting.

8

Hyperparameters RMSE net Task-based net (our method) % Improvement
� ✏

0.1 0.05 �1.45± 4.67 �2.92± 0.30 1.02
1 0.5 4.96± 4.85 2.28± 2.99 0.54

10 5 131± 145 95.9± 29.8 0.27
35 15 173± 7.38 170± 2.16 0.02

Table 1: Task loss results for 10 runs each of the battery storage problem, given a lithium-ion battery
with attributes B = 1, �eff = 0.9, cin = 0.5, and cout = 0.2. (Lower loss is better.) Our task-based net
on average somewhat improves upon the RMSE net, and demonstrates more reliable performance.

✏ < �). The battery also has a charging efficiency (�eff), limits on speed of charge (cin) and discharge
(cout), and begins at half charge. This can be written as the stochastic programming problem

minimize

zin,zout,zstate2R24
E

y⇠p(y|x;✓)

"
24X

i=1

y

i

(zin � zout)i + �

����zstate �
B

2

����
2

+ ✏kzink2 + ✏kzoutk2
#

subject to zstate,i+1 = zstate,i � zout,i + �effzin,i 8i, zstate,1 = B/2,

0 zin cin, 0 zout cout, 0 zstate B.

(12)

Assuming (as we will in our model) that y
i

is a random variable with mean µ

i

, then this expectation
has a closed form that depends only on the mean. Further details are given in the appendix.

To develop a predictive model for the mean, we use an architecture similar to that described in
Section 4.2. In this case, we input the past day’s prices and temperature, the next day’s load forecasts
and temperature forecasts, and additional features such as non-linear functions of the temperatures
and temporal features similar to those in Section 4.2. We again train the model to minimize the
mean squared error between the model’s predictions and the actual prices (giving the mean prediction
µ

i

), using about 5 years of data to train the model and 1 subsequent year for testing. Using the
mean predictions of this base model, we then solve the storage scheduling problem by solving the
optimization problem (12), again learning network parameters by minimizing the task loss. We
compare against a traditional stochastic programming model that minimizes just the RMSE.

Table 1 shows the performance of the two models. As energy prices are difficult to predict due
to numerous outliers and price spikes, the models in this case are not as well-tuned as in our load
forecasting experiment; thus, their performance is relatively variable. Even then, in all cases, our
task-based model demonstrates better average performance than the RMSE model when evaluated
on task loss, the objective most important to the battery operator (although the improvements are
not statistically significant). More interestingly, our task-based method shows less (and in some
cases, far less) variability in performance than the RMSE-minimizing method. Qualitatively, our
task-based method hedges against perverse events such as price spikes that could substantially affect
the performance of a battery charging schedule. The task-based method thus yields more reliable
performance than a pure RMSE-minimizing method in the case the models are inaccurate due to a
high level of stochasticity in the prediction task.

5 Conclusions and future work

This paper proposes an end-to-end approach for learning machine learning models that will be used in
the loop of a larger process. Specifically, we consider training probabilistic models in the context of
stochastic programming to directly capture a task-based objective. Preliminary experiments indicate
that our task-based learning model substantially outperforms MLE and policy-optimizing approaches
in all but the (rare) case that the MLE model “perfectly” characterizes the underlying distribution.
Our method also achieves a 38.6% performance improvement over a highly-optimized real-world
stochastic programming algorithm for scheduling electricity generation based on predicted load.
In the case of energy price prediction, where there is a high degree of inherent stochasticity in
the problem, our method demonstrates more reliable task performance than a traditional predictive
method. The task-based approach thus demonstrates promise in optimizing in-the-loop predictions.
Future work includes an extension of our approach to stochastic learning models with multiple rounds,
and further to model predictive control and full reinforcement learning settings.

9

Acknowledgments

This material is based upon work supported by the National Science Foundation Graduate Research
Fellowship Program under Grant No. DGE1252522, and by the Department of Energy Computational
Science Graduate Fellowship.

References
[1] Stein W Wallace and Stein-Erik Fleten. Stochastic programming models in energy. Handbooks

in operations research and management science, 10:637–677, 2003.

[2] William T Ziemba and Raymond G Vickson. Stochastic optimization models in finance,
volume 1. World Scientific, 2006.

[3] John A Buzacott and J George Shanthikumar. Stochastic models of manufacturing systems,
volume 4. Prentice Hall Englewood Cliffs, NJ, 1993.

[4] Alexander Shapiro and Andy Philpott. A tutorial on stochastic programming. Manuscript.
Available at www2.isye.gatech.edu/ashapiro/publications.html, 17, 2007.

[5] Jeff Linderoth, Alexander Shapiro, and Stephen Wright. The empirical behavior of sampling
methods for stochastic programming. Annals of Operations Research, 142(1):215–241, 2006.

[6] R Tyrrell Rockafellar and Roger J-B Wets. Scenarios and policy aggregation in optimization
under uncertainty. Mathematics of operations research, 16(1):119–147, 1991.

[7] Yann LeCun, Urs Muller, Jan Ben, Eric Cosatto, and Beat Flepp. Off-road obstacle avoidance
through end-to-end learning. In NIPS, pages 739–746, 2005.

[8] Ryan W Thomas, Daniel H Friend, Luiz A Dasilva, and Allen B Mackenzie. Cognitive networks:
adaptation and learning to achieve end-to-end performance objectives. IEEE Communications
Magazine, 44(12):51–57, 2006.

[9] Kai Wang, Boris Babenko, and Serge Belongie. End-to-end scene text recognition. In Computer
Vision (ICCV), 2011 IEEE International Conference on, pages 1457–1464. IEEE, 2011.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-
age recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[11] Tao Wang, David J Wu, Adam Coates, and Andrew Y Ng. End-to-end text recognition
with convolutional neural networks. In Pattern Recognition (ICPR), 2012 21st International
Conference on, pages 3304–3308. IEEE, 2012.

[12] Alex Graves and Navdeep Jaitly. Towards end-to-end speech recognition with recurrent neural
networks. In ICML, volume 14, pages 1764–1772, 2014.

[13] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro,
Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, et al. Deep speech 2: End-to-
end speech recognition in english and mandarin. arXiv preprint arXiv:1512.02595, 2015.

[14] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. Journal of Machine Learning Research, 17(39):1–40, 2016.

[15] Aviv Tamar, Sergey Levine, Pieter Abbeel, YI WU, and Garrett Thomas. Value iteration
networks. In Advances in Neural Information Processing Systems, pages 2146–2154, 2016.

[16] Ken Harada, Jun Sakuma, and Shigenobu Kobayashi. Local search for multiobjective function
optimization: pareto descent method. In Proceedings of the 8th annual conference on Genetic
and evolutionary computation, pages 659–666. ACM, 2006.

[17] Kristof Van Moffaert and Ann Nowé. Multi-objective reinforcement learning using sets of
pareto dominating policies. Journal of Machine Learning Research, 15(1):3483–3512, 2014.

10

[18] Hossam Mossalam, Yannis M Assael, Diederik M Roijers, and Shimon Whiteson. Multi-
objective deep reinforcement learning. arXiv preprint arXiv:1610.02707, 2016.

[19] Marco A Wiering, Maikel Withagen, and Mădălina M Drugan. Model-based multi-objective
reinforcement learning. In Adaptive Dynamic Programming and Reinforcement Learning
(ADPRL), 2014 IEEE Symposium on, pages 1–6. IEEE, 2014.

[20] Veselin Stoyanov, Alexander Ropson, and Jason Eisner. Empirical risk minimization of graphical
model parameters given approximate inference, decoding, and model structure. International
Conference on Artificial Intelligence and Statistics, 15:725–733, 2011. ISSN 15324435.

[21] Tamir Hazan, Joseph Keshet, and David A McAllester. Direct loss minimization for structured
prediction. In Advances in Neural Information Processing Systems, pages 1594–1602, 2010.

[22] Yang Song, Alexander G Schwing, Richard S Zemel, and Raquel Urtasun. Training deep neural
networks via direct loss minimization. In Proceedings of The 33rd International Conference on
Machine Learning, pages 2169–2177, 2016.

[23] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo,
David Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary
tasks. arXiv preprint arXiv:1611.05397, 2016.

[24] Somil Bansal, Roberto Calandra, Ted Xiao, Sergey Levine, and Claire J Tomlin. Goal-driven
dynamics learning via bayesian optimization. arXiv preprint arXiv:1703.09260, 2017.

[25] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. arXiv preprint arXiv:1703.03400, 2017.

[26] Yoshua Bengio. Using a financial training criterion rather than a prediction criterion. Interna-
tional Journal of Neural Systems, 8(04):433–443, 1997.

[27] Adam N Elmachtoub and Paul Grigas. Smart "predict, then optimize". arXiv preprint
arXiv:1710.08005, 2017.

[28] Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and
Edison Guo. On differentiating parameterized argmin and argmax problems with application to
bi-level optimization. arXiv preprint arXiv:1607.05447, 2016.

[29] Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. arXiv preprint
arXiv:1609.07152, 2016.

[30] Paul T Boggs and Jon W Tolle. Sequential quadratic programming. Acta numerica, 4:1–51,
1995.

[31] Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural
networks. arXiV preprint arXiv:1703.00443, 2017.

[32] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[33] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

11

