NIPS Proceedingsβ

Stochastic and Adversarial Online Learning without Hyperparameters

Part of: Advances in Neural Information Processing Systems 30 (NIPS 2017)

[PDF] [BibTeX] [Supplemental] [Reviews]

Authors

Conference Event Type: Poster

Abstract

Most online optimization algorithms focus on one of two things: performing well in adversarial settings by adapting to unknown data parameters (such as Lipschitz constants), typically achieving $O(\sqrt{T})$ regret, or performing well in stochastic settings where they can leverage some structure in the losses (such as strong convexity), typically achieving $O(\log(T))$ regret. Algorithms that focus on the former problem hitherto achieved $O(\sqrt{T})$ in the stochastic setting rather than $O(\log(T))$. Here we introduce an online optimization algorithm that achieves $O(\log^4(T))$ regret in a wide class of stochastic settings while gracefully degrading to the optimal $O(\sqrt{T})$ regret in adversarial settings (up to logarithmic factors). Our algorithm does not require any prior knowledge about the data or tuning of parameters to achieve superior performance.