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Abstract

We introduce a loss for metric learning, which is inspired by the Lowe’s matching
criterion for SIFT. We show that the proposed loss, that maximizes the distance
between the closest positive and closest negative example in the batch, is better
than complex regularization methods; it works well for both shallow and deep
convolution network architectures. Applying the novel loss to the L2Net CNN
architecture results in a compact descriptor named HardNet. It has the same
dimensionality as SIFT (128) and shows state-of-art performance in wide baseline
stereo, patch verification and instance retrieval benchmarks.

1 Introduction

Many computer vision tasks rely on finding local correspondences, e.g. image retrieval [1, 2],
panorama stitching [3], wide baseline stereo [4], 3D-reconstruction [5, 6]. Despite the growing
number of attempts to replace complex classical pipelines with end-to-end learned models, e.g., for
image matching [7], camera localization [8], the classical detectors and descriptors of local patches
are still in use, due to their robustness, efficiency and their tight integration. Moreover, reformulating
the task, which is solved by the complex pipeline as a differentiable end-to-end process is highly
challenging.

As a first step towards end-to-end learning, hand-crafted descriptors like SIFT [9, 10] or detec-
tors [9, 11, 12] have been replace with learned ones, e.g., LIFT [13], MatchNet [14] and DeepCom-
pare [15]. However, these descriptors have not gained popularity in practical applications despite
good performance in the patch verification task. Recent studies have confirmed that SIFT and its
variants (RootSIFT-PCA [16], DSP-SIFT [17]) significantly outperform learned descriptors in image
matching and small-scale retrieval [18], as well as in 3D-reconstruction [19]. One of the conclusions
made in [19] is that current local patches datasets are not large and diverse enough to allow the
learning of a high-quality widely-applicable descriptor.

In this paper, we focus on descriptor learning and, using a novel method, train a convolutional neural
network (CNN), called HardNet. We additionally show that our learned descriptor significantly
outperforms both hand-crafted and learned descriptors in real-world tasks like image retrieval and two
view matching under extreme conditions. For the training, we use the standard patch correspondence
data thus showing that the available datasets are sufficient for going beyond the state of the art.

2 Related work

Classical SIFT local feature matching consists of two parts: finding nearest neighbors and comparing
the first to second nearest neighbor distance ratio threshold for filtering false positive matches. To
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best of our knowledge, no work in local descriptor learning fully mimics such strategy as the learning
objective.

Simonyan and Zisserman [20] proposed a simple filter plus pooling scheme learned with convex
optimization to replace the hand-crafted filters and poolings in SIFT. Han et al. [14] proposed a two-
stage siamese architecture – for embedding and for two-patch similarity. The latter network improved
matching performance, but prevented the use of fast approximate nearest neighbor algorithms like
kd-tree [21]. Zagoruyko and Komodakis [15] have independently presented similar siamese-based
method which explored different convolutional architectures. Simo-Serra et al [22] harnessed hard-
negative mining with a relative shallow architecture that exploited pair-based similarity.

The three following papers have most closedly followed the classical SIFT matching scheme. Bal-
ntas et al [23] used a triplet margin loss and a triplet distance loss, with random sampling of the
patch triplets. They show the superiority of the triplet-based architecture over a pair based. Although,
unlike SIFT matching or our work, they sampled negatives randomly. Choy et al [7] calculate the
distance matrix for mining positive as well as negative examples, followed by pairwise contrastive
loss.

Tian et al [24] use n matching pairs in batch for generating n2 − n negative samples and require that
the distance to the ground truth matchings is minimum in each row and column. No other constraint
on the distance or distance ratio is enforced. Instead, they propose a penalty for the correlation
of the descriptor dimensions and adopt deep supervision [25] by using intermediate feature maps
for matching. Given the state-of-art performance, we have adopted the L2Net [24] architecture as
base for our descriptor. We show that it is possible to learn even more powerful descriptor with
significantly simpler learning objective without need of the two auxiliary loss terms.
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Figure 1: Proposed sampling procedure. First, patches are described by the current network, then a
distance matrix is calculated. The closest non-matching descriptor – shown in red – is selected for
each ai and pi patch from positive pair (green) respectively. Finally, among two negative candidates
the hardest one is chosen. All operations are done in a single forward pass.

3 The proposed descriptor

3.1 Sampling and loss

Our learning objective mimics SIFT matching criterion. The process is shown in Figure 1. First, a
batch X = (Ai, Pi)i=1..n of matching local patches is generated, where A stands for the anchor and
P for the positive. The patches Ai and Pi correspond to the same point on 3D surface. We make sure
that in batch X , there is exactly one pair originating from a given 3D point.

Second, the 2n patches in X are passed through the network shown in Figure 2.
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L2 pairwise distance matrix D = cdist(a, p), where, d(ai, pj) =
√

2− 2aipj , i = 1..n, j = 1..n of
size n× n is calculated, where ai and pj denote the descriptors of patches Ai and Pj respectively.

Next, for each matching pair ai and pi the closest non-matching descriptors i.e. the 2nd nearest
neighbor, are found respectively:

ai – anchor descriptor, pi – positive descriptor,

pjmin
– closest non-matching descriptor to ai, where jmin = argminj=1..n,j 6=i d(ai, pj),

akmin
– closest non-matching descriptor to pi where kmin = argmink=1..n,k 6=i d(ak, pi).

Then from each quadruplet of descriptors (ai, pi, pjmin
, akmin

), a triplet is formed: (ai, pi, pjmin
), if

d(ai, pjmin
) < d(akmin

, pi) and (pi, ai, akmin
) otherwise.

Our goal is to minimize the distance between the matching descriptor and closest non-matching
descriptor. These n triplet distances are fed into the triplet margin loss:

L =
1

n

∑
i=1,n

max (0, 1 + d(ai, pi)−min (d(ai, pjmin
), d(akmin

, pi))) (1)

where min (d(ai, pjmin
), d(akmin

, pi) is pre-computed during the triplet construction.

The distance matrix calculation is done on GPU and the only overhead compared to the random triplet
sampling is the distance matrix calculation and calculating the minimum over rows and columns.
Moreover, compared to usual learning with triplets, our scheme needs only two-stream CNN, not
three, which results in 30% less memory consumption and computations.

Unlike in [24], neither deep supervision for intermediate layers is used, nor a constraint on the
correlation of descriptor dimensions. We experienced no significant over-fitting.

3.2 Model architecture
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Figure 2: The architecture of our network, adopted from L2Net [24]. Each convolutional layer is
followed by batch normalization and ReLU, except the last one. Dropout regularization is used before
the last convolution layer.

The HardNet architecture, Figure 2, is identical to L2Net [24]. Padding with zeros is applied to
all convolutional layers, to preserve the spatial size, except to the final one. There are no pooling
layers, since we found that they decrease performance of the descriptor. That is why the spatial size is
reduced by strided convolutions. Batch normalization [26] layer followed by ReLU [27] non-linearity
is added after each layer, except the last one. Dropout [28] regularization with 0.1 dropout rate is
applied before the last convolution layer. The output of the network is L2 normalized to produce
128-D descriptor with unit-length. Grayscale input patches with size 32× 32 pixels are normalized
by subtracting the per-patch mean and dividing by the per-patch standard deviation.

Optimization is done by stochastic gradient descent with learning rate of 0.1, momentum of 0.9 and
weight decay of 0.0001. Learning rate was linearly decayed to zero within 10 epochs for the most of
the experiments in this paper. Training is done with PyTorch library [29].

3.3 Model training

UBC Phototour [3], also known as Brown dataset. It consists of three subsets: Liberty, Notre Dame
and Yosemite with about 400k normalized 64x64 patches in each. Keypoints were detected by DoG
detector and verified by 3D model.
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Test set consists of 100k matching and non-matching pairs for each sequence. Common setup is to
train descriptor on one subset and test on two others. Metric is the false positive rate (FPR) at point
of 0.95 true positive recall. It was found out by Michel Keller that [14] and [23] evaluation procedure
reports FDR (false discovery rate) instead of FPR (false positive rate). To avoid the incomprehension
of results we’ve decided to provide both FPR and FDR rates and re-estimated the scores for straight
comparison. Results are shown in Table 1. Proposed descriptor outperforms competitors, with training
augmentation, or without it. We haven‘t included results on multiscale patch sampling or so called
“center-surrounding” architecture for two reasons. First, architectural choices are beyond the scope
of current paper. Second, it was already shown in [24, 30] that “center-surrounding” consistently
improves results on Brown dataset for different descriptors, while hurts matching performance on
other, more realistic setups, e.g., on Oxford-Affine [31] dataset.

In the rest of paper we use descriptor trained on Liberty sequence, which is a common practice, to
allow a fair comparison. TFeat [23] and L2Net [24] use the same dataset for training.

Table 1: Patch correspondence verification performance on the Brown dataset. We report false
positive rate at true positive rate equal to 95% (FPR95). Some papers report false discovery rate
(FDR) instead of FPR due to bug in the source code. For consistency we provide FPR, either
obtained from the original article or re-estimated from the given FDR (marked with *). The best
results are in bold.

Training Notredame Yosemite Liberty Yosemite Liberty Notredame Mean

Test Liberty Notredame Yosemite FDR FPR

SIFT [9] 29.84 22.53 27.29 26.55
MatchNet*[14] 7.04 11.47 3.82 5.65 11.6 8.7 7.74 8.05
TFeat-M* [23] 7.39 10.31 3.06 3.8 8.06 7.24 6.47 6.64
L2Net [24] 3.64 5.29 1.15 1.62 4.43 3.30 3.24
HardNet (ours) 3.06 4.27 0.96 1.4 3.04 2.53 3.00 2.54

Augmentation: flip, 90◦ random rotation

GLoss+[30] 3.69 4.91 0.77 1.14 3.09 2.67 2.71
DC2ch2st+[15] 4.85 7.2 1.9 2.11 5.00 4.10 4.19
L2Net+ [24] + 2.36 4.7 0.72 1.29 2.57 1.71 2.23
HardNet+ (ours) 2.28 3.25 0.57 0.96 2.13 2.22 1.97 1.9

3.4 Exploring the batch size influence

We study the influence of mini-batch size on the final descriptor performance. It is known that
small mini-batches are beneficial to faster convergence and better generalization [32], while large
batches allow better GPU utilization. Our loss function design should benefit from seeing more
hard negative patches to learn to distinguish them from true positive patches. We report the results
for batch sizes 16, 64, 128, 512, 1024, 2048. We trained the model described in Section 3.2 using
Liberty sequence of Brown dataset. Results are shown in Figure 3. As expected, model performance
improves with increasing the mini-batch size, as more examples are seen to get harder negatives.
Although, increasing batch size to more than 512 does not bring significant benefit.

4 Empirical evaluation

Recently, Balntas et al. [23] showed that good performance on patch verification task on Brown dataset
does not always mean good performance in the nearest neighbor setup and vice versa. Therefore, we
have extensively evaluated learned descriptors on real-world tasks like two view matching and image
retrieval.

We have selected RootSIFT [10], TFeat-M* [23], and L2Net [24] for direct comparison with our
descriptor, as they show the best results on a variety of datasets.
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Figure 3: Influence of the batch size on de-
scriptor performance. The metric is false
positive rate (FPR) at true positive rate
equal to 95%, averaged over Notredame
and Yosemite validation sequences.
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Figure 4: Patch retrieval descriptor performance
(mAP) vs. the number of distractors, evaluated on
HPatches dataset.

4.1 Patch descriptor evaluation

HPatches [18] is a recent dataset for local patch descriptor evaluation. It consists of 116 sequences of
6 images. The dataset is split into two parts: viewpoint – 59 sequences with significant viewpoint
change and illumination – 57 sequences with significant illumination change, both natural and
artificial. Keypoints are detected by DoG, Hessian and Harris detectors in the reference image and
reprojected to the rest of the images in each sequence with 3 levels of geometric noise: Easy, Hard,
and Tough variants. The HPatches benchmark defines three tasks: patch correspondence verification,
image matching and small-scale patch retrieval. We refer the reader to the HPatches paper [18] for a
detailed protocol for each task.

Results are shown in Figure 5. L2Net and HardNet have shown similar performance on the patch
verification task with a small advantage of HardNet. On the matching task, even the non-augmented
version of HardNet outperforms the augmented version of L2Net+ by a noticeable margin. The
difference is larger in the TOUGH and HARD setups. Illumination sequences are more challenging
than the geometric ones, for all the descriptors. We have trained network with TFeat architecture, but
with proposed loss function – it is denoted as HardTFeat. It outperforms original version in matching
and retrieval, while being on par with it on patch verification task.

In patch retrieval, relative performance of the descriptors is similar to the matching problem: HardNet
beats L2Net+. Both descriptors significantly outperform the previous state-of-the-art, showing the
superiority of the selected deep CNN architecture over the shallow TFeat model.
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Figure 5: Left to right: Verification, matching and retrieval results on HPatches dataset. Marker
color indicates the level of geometrical noise in: EASY, HARD and TOUGH. Marker type indicates
the experimental setup. DIFFSEQ and SAMESEQ shows the source of negative examples for the
verification task. VIEWPT and ILLUM indicate the type of sequences for matching. None of the
descriptors is trained on HPatches.
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Table 2: Comparison of the loss functions and sampling strategies on the HPatches matching task,
the mean mAP is reported. CPR stands for the regularization penalty of the correlation between
descriptor channels, as proposed in [24]. Hard negative mining is performed once per epoch. Best
results are in bold. HardNet uses the hardest-in-batch sampling and the triplet margin loss.

Sampling / Loss Softmin Triplet margin Contrastive

m = 1 m = 1 m = 2

Random overfit
Hard negative mining overfit
Random + CPR 0.349 0.286 0.007 0.083
Hard negative mining + CPR 0.391 0.346 0.055 0.279

Hardest in batch (ours) 0.474 0.482 0.444 0.482

We also ran another patch retrieval experiment, varying the number of distractors (non-matching
patches) in the retrieval dataset. The results are shown in Figure 4. TFeat descriptor performance,
which is comparable to L2Net in the presence of low number distractors, degrades quickly as
the size of the the database grows. At about 10,000 its performance drops below SIFT. This
experiment explains why TFeat performs relatively poorly on the Oxford5k [33] and Paris6k [34]
benchmarks, which contain around 12M and 15M distractors, respectively, see Section 4.4 for more
details. Performance of the HardNet decreases slightly for both augmented and plain version and the
difference in mAP to other descriptors grows with the increasing complexity of the task.

4.2 Ablation study

For better understanding of the significance of the sampling strategy and the loss function, we conduct
experiments summarized in Table 2. We train our HardNet model (architecture is exactly the same as
L2Net model), change one parameter at a time and evaluate its impact.

The following sampling strategies are compared: random, the proposed “hardest-in-batch”, and the
“classical” hard negative mining, i.e. selecting in each epoch the closest negatives from the full
training set. The following loss functions are tested: softmin on distances, triplet margin with margin
m = 1, contrastive with margins m = 1,m = 2. The last is the maximum possible distance for
unit-normed descriptors. Mean mAP on HPatches Matching task is shown in Table 2.

The proposed “hardest-in-batch” clearly outperforms all the other sampling strategies for all loss
functions and it is the main reason for HardNet’s good performance. The random sampling and
“classical” hard negative mining led to huge overfit, when training loss was high, but test performance
was low and varied several times from run to run. This behavior was observed with all loss function.
Similar results for random sampling were reported in [24]. The poor results of hard negative mining
(“hardest-in-the-training-set”) are surprising. We guess that this is due to dataset label noise, the
mined “hard negatives” are actually positives. Visual inspection confirms this. We were able to get
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Figure 6: Contribution to the gradient magnitude from the positive and negative examples. Horizontal
and vertical axes show the distance from the anchor (a) to the negative (n) and positive (p) examples
respectively. Softmin loss gradient quickly decreases when d(a, n) > d(a, p), unlike the triplet
margin loss. For the contrastive loss, negative examples with d(a, n) > m contribute zero to the
gradient. The triplet margin loss and the contrastive loss with a big margin behave very similarly.
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reasonable results with random and hard negative mining sampling only with additional correlation
penalty on descriptor channels (CPR), as proposed in [24].

Regarding the loss functions, softmin gave the most stable results across all sampling strategies, but
it is marginally outperformed by contrastive and triplet margin loss for our strategy. One possible
explanation is that the triplet margin loss and contrastive loss with a large margin have constant
non-zero derivative w.r.t to both positive and negative samples, see Figure 6. In the case of contrastive
loss with a small margin, many negative examples are not used in the optimization (zero derivatives),
while the softmin derivatives become small, once the distance to the positive example is smaller than
to the negative one.

4.3 Wide baseline stereo

To validate descriptor generalization and their ability to operate in extreme conditions, we tested them
on the W1BS dataset [4]. It consists of 40 image pairs with one particular extreme change between
the images:

Appearance (A): difference in appearance due to seasonal or weather change, occlusions, etc;

Geometry (G): difference in scale, camera and object position;

Illumination (L): significant difference in intensity, wavelength of light source;

Sensor (S): difference in sensor data (IR, MRI).

Moreover, local features in W1BS dataset are detected with MSER [35], Hessian-Affine [11] (in
implementation from [36]) and FOCI [37] detectors. They fire on different local structures than DoG.
Note that DoG patches were used for the training of the descriptors. Another significant difference to
the HPatches setup is the absence of the geometrical noise: all patches are perfectly reprojected to
the target image in pair. The testing protocol is the same as for the HPatches matching task.

Results are shown in Figure 7. HardNet and L2Net perform comparably, former is performing better
on images with geometrical and appearance changes, while latter works a bit better in map2photo and
visible-vs-infrared pairs. Both outperform SIFT, but only by a small margin. However, considering
the significant amount of the domain shift, descriptors perform very well, while TFeat loses badly
to SIFT. HardTFeat significantly outperforms the original TFeat descriptor on the W1BS dataset,
showing the superiority of the proposed loss.

Good performance on patch matching and verification task does not automatically lead to the better
performance in practice, e.g. to more images registered. Therefore we also compared descriptor on
wide baseline stereo setup with two metric: number of successfully matched image pairs and average
number of inliers per matched pair, following the matcher comparison protocol from [4]. The only
change to the original protocol is that first fast matching steps with ORB detector and descriptor were
removed, as we are comparing “SIFT-replacement” descriptors.

The results are shown in Table 3. Results on Edge Foci (EF) [37], Extreme view [38] and Oxford
Affine [11] datasets are saturated and all the descriptors are good enough for matching all image pairs.
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Figure 7: Descriptor evaluation on the W1BS patch dataset, mean area under precision-recall curve is
reported. Letters denote nuisance factor, A: appearance; G: viewpoint/geometry; L: illumination; S:
sensor; map2photo: satellite photo vs. map.
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HardNet has an a slight advantage in a number of inliers per image. The rest of datasets: SymB [39],
GDB [40], WxBS [4] and LTLL [41] have one thing in common: image pairs are or from different
domain than photo (e.g. drawing to drawing) or cross-domain (e.g., drawing to photo). Here HardNet
outperforms learned descriptors and is on-par with hand-crafted RootSIFT. We would like to note
that HardNet was not learned to match in different domain, nor cross-domain scenario, therefore such
results show the generalization ability.

Table 3: Comparison of the descriptors on wide baseline stereo within MODS matcher[4] on wide
baseline stereo datasets. Number of matched image pairs and average number of inliers are reported.
Numbers is the header corresponds to the number of image pairs in dataset.

EF EVD OxAff SymB GDB WxBS LTLL

Descriptor 33 inl. 15 inl. 40 inl. 46 inl. 22 inl. 37 inl. 172 inl.

RootSIFT 33 32 15 34 40 169 45 43 21 52 11 93 123 27
TFeat-M* 32 30 15 37 40 265 40 45 16 72 10 62 96 29
L2Net+ 33 34 15 34 40 304 43 46 19 78 9 51 127 26
HardNet+ 33 35 15 41 40 316 44 47 21 75 11 54 127 31

4.4 Image retrieval

We evaluate our method, and compare against the related ones, on the practical application of image
retrieval with local features. Standard image retrieval datasets are used for the evaluation, i.e.,
Oxford5k [33] and Paris6k [34] datasets. Both datasets contain a set of images (5062 for Oxford5k
and 6300 for Paris6k) depicting 11 different landmarks together with distractors. For each of the
11 landmarks there are 5 different query regions defined by a bounding box, constituting 55 query
regions per dataset. The performance is reported as mean average precision (mAP) [33].

In the first experiment, for each image in the dataset, multi-scale Hessian-affine features [31] are
extracted. Exactly the same features are described by ours and all related methods, each of them
producing a 128-D descriptor per feature. Then, k-means with approximate nearest neighbor [21] is
used to learn a 1 million visual vocabulary on an independent dataset, that is, when evaluating on
Oxford5k, the vocabulary is learned with descriptors of Paris6k and vice versa. All descriptors of
testing dataset are assigned to the corresponding vocabulary, so finally, an image is represented by
the histogram of visual word occurrences, i.e., the bag-of-words (BoW) [1] representation, and an
inverted file is used for an efficient search. Additionally, spatial verification (SV) [33], and standard
query expansion (QE) [34] are used to re-rank and refine the search results. Comparison with the
related work on patch description is presented in Table 4. HardNet+ and L2Net+ perform comparably
across both datasets and all settings, with slightly better performance of HardNet+ on average across

Table 4: Performance (mAP) evaluation on bag-of-words (BoW) image retrieval. Vocabulary
consisting of 1M visual words is learned on independent dataset, that is, when evaluating on Oxford5k,
the vocabulary is learned with features of Paris6k and vice versa. SV: spatial verification. QE: query
expansion. The best results are highlighted in bold. All the descriptors except SIFT and HardNet++
were learned on Liberty sequence of Brown dataset [3]. HardNet++ is trained on union of Brown and
HPatches [18] datasets.

Oxford5k Paris6k

Descriptor BoW BoW+SV BoW+QE BoW BoW+SV BoW+QE

TFeat-M* [23] 46.7 55.6 72.2 43.8 51.8 65.3
RootSIFT [10] 55.1 63.0 78.4 59.3 63.7 76.4
L2Net+ [24] 59.8 67.7 80.4 63.0 66.6 77.2
HardNet 59.0 67.6 83.2 61.4 67.4 77.5
HardNet+ 59.8 68.8 83.0 61.0 67.0 77.5

HardNet++ 60.8 69.6 84.5 65.0 70.3 79.1
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Table 5: Performance (mAP) comparison with the state-of-the-art image retrieval with local features.
Vocabulary is learned on independent dataset, that is, when evaluating on Oxford5k, the vocabulary
is learned with features of Paris6k and vice versa. All presented results are with spatial verification
and query expansion. VS: vocabulary size. SA: single assignment. MA: multiple assignments. The
best results are highlighted in bold.

Oxford5k Paris6k

Method VS SA MA SA MA

SIFT–BoW [36] 1M 78.4 82.2 – –
SIFT–BoW-fVocab [46] 16M 74.0 84.9 73.6 82.4
RootSIFT–HQE [43] 65k 85.3 88.0 81.3 82.8
HardNet++–HQE 65k 86.8 88.3 82.8 84.9

all results (average mAP 69.5 vs. 69.1). RootSIFT, which was the best performing descriptor in
image retrieval for a long time, falls behind with average mAP 66.0 across all results.

We also trained HardNet++ version – with all available training data at the moment: union of Brown
and HPatches datasets, instead of just Liberty sequence from Brown for the HardNet+. It shows the
benefits of having more training data and is performing best for all setups.

Finally, we compare our descriptor with the state-of-the-art image retrieval approaches that use local
features. For fairness, all methods presented in Table 5 use the same local feature detector as described
before, learn the vocabulary on an independent dataset, and use spatial verification (SV) and query
expansion (QE). In our case (HardNet++–HQE), a visual vocabulary of 65k visual words is learned,
with additional Hamming embedding (HE) [42] technique that further refines descriptor assignments
with a 128 bits binary signature. We follow the same procedure as RootSIFT–HQE [43] method, by
replacing RootSIFT with our learned HardNet++ descriptor. Specifically, we use: (i) weighting of the
votes as a decreasing function of the Hamming distance [44]; (ii) burstiness suppression [44]; (iii)
multiple assignments of features to visual words [34, 45]; and (iv) QE with feature aggregation [43].
All parameters are set as in [43]. The performance of our method is the best reported on both
Oxford5k and Paris6k when learning the vocabulary on an independent dataset (mAP 89.1 was
reported [10] on Oxford5k by learning it on the same dataset comprising the relevant images), and
using the same amount of features (mAP 89.4 was reported [43] on Oxford5k when using twice as
many local features, i.e., 22M compared to 12.5M used here).

5 Conclusions

We proposed a novel loss function for learning a local image descriptor that relies on the hard negative
mining within a mini-batch and the maximization of the distance between the closest positive and
closest negative patches. The proposed sampling strategy outperforms classical hard-negative mining
and random sampling for softmin, triplet margin and contrastive losses.

The resulting descriptor is compact – it has the same dimensionality as SIFT (128), it shows state-
of-art performance on standard matching, patch verification and retrieval benchmarks and it is
fast to compute on a GPU. The training source code and the trained convnets are available at
https://github.com/DagnyT/hardnet.

Acknowledgements

The authors were supported by the Czech Science Foundation Project GACR P103/12/G084, the
Austrian Ministry for Transport, Innovation and Technology, the Federal Ministry of Science, Re-
search and Economy, and the Province of Upper Austria in the frame of the COMET center, the
CTU student grant SGS17/185/OHK3/3T/13, and the MSMT LL1303 ERC-CZ grant. Anastasiya
Mishchuk was supported by the Szkocka Research Group Grant.

9

https://github.com/DagnyT/hardnet


References
[1] Josef Sivic and Andrew Zisserman. Video google: A text retrieval approach to object matching

in videos. In International Conference on Computer Vision (ICCV), pages 1470–1477, 2003.

[2] Filip Radenovic, Giorgos Tolias, and Ondrej Chum. CNN image retrieval learns from BoW:
Unsupervised fine-tuning with hard examples. In European Conference on Computer Vision
(ECCV), pages 3–20, 2016.

[3] Matthew Brown and David G. Lowe. Automatic panoramic image stitching using invariant
features. International Journal of Computer Vision (IJCV), 74(1):59–73, 2007.

[4] Dmytro Mishkin, Jiri Matas, Michal Perdoch, and Karel Lenc. Wxbs: Wide baseline stereo
generalizations. Arxiv 1504.06603, 2015.

[5] Johannes L. Schonberger, Filip Radenovic, Ondrej Chum, and Jan-Michael Frahm. From single
image query to detailed 3D reconstruction. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5126–5134, 2015.

[6] Johannes L. Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 4104–4113, 2016.

[7] Christopher B. Choy, JunYoung Gwak, Silvio Savarese, and Manmohan Chandraker. Universal
correspondence network. In Advances in Neural Information Processing Systems, pages 2414–
2422, 2016.

[8] Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A convolutional network
for real-time 6-DOF camera relocalization. In International Conference on Computer Vision
(ICCV), 2015.

[9] David G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal
of Computer Vision (IJCV), 60(2):91–110, 2004.

[10] Relja Arandjelovic and Andrew Zisserman. Three things everyone should know to improve
object retrieval. In Conference on Computer Vision and Pattern Recognition (CVPR), pages
2911–2918, 2012.

[11] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine invariant interest point detectors.
International Journal of Computer Vision (IJCV), 60(1):63–86, 2004.

[12] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. ORB: An efficient alternative
to SIFT or SURF. In International Conference on Computer Vision (ICCV), pages 2564–2571,
2011.

[13] Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, and Pascal Fua. LIFT: Learned invariant feature
transform. In European Conference on Computer Vision (ECCV), pages 467–483, 2016.

[14] Xufeng Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg. Matchnet: Unifying feature
and metric learning for patch-based matching. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3279–3286, 2015.

[15] Sergey Zagoruyko and Nikos Komodakis. Learning to compare image patches via convolutional
neural networks. In Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[16] Andrei Bursuc, Giorgos Tolias, and Herve Jegou. Kernel local descriptors with implicit rotation
matching. In ACM International Conference on Multimedia Retrieval, 2015.

[17] Jingming Dong and Stefano Soatto. Domain-size pooling in local descriptors: DSP-SIFT. In
Conference on Computer Vision and Pattern Recognition (CVPR), pages 5097–5106, 2015.

[18] Vassileios Balntas, Karel Lenc, Andrea Vedaldi, and Krystian Mikolajczyk. HPatches: A
benchmark and evaluation of handcrafted and learned local descriptors. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

10



[19] Johannes L. Schonberger, Hans Hardmeier, Torsten Sattler, and Marc Pollefeys. Comparative
evaluation of hand-crafted and learned local features. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[20] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Descriptor learning using convex
optimisation. In European Conference on Computer Vision (ECCV), pages 243–256, 2012.

[21] Marius Muja and David G. Lowe. Fast approximate nearest neighbors with automatic algo-
rithm configuration. In International Conference on Computer Vision Theory and Application
(VISSAPP), pages 331–340, 2009.

[22] Edgar Simo-Serra, Eduard Trulls, Luis Ferraz, Iasonas Kokkinos, Pascal Fua, and Francesc
Moreno-Noguer. Discriminative learning of deep convolutional feature point descriptors. In
International Conference on Computer Vision (ICCV), pages 118–126, 2015.

[23] Vassileios Balntas, Edgar Riba, Daniel Ponsa, and Krystian Mikolajczyk. Learning local feature
descriptors with triplets and shallow convolutional neural networks. In British Machine Vision
Conference (BMVC), 2016.

[24] Bin Fan Yurun Tian and Fuchao Wu. L2-Net: Deep learning of discriminative patch descriptor
in euclidean space. In Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[25] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-
supervised nets. In Artificial Intelligence and Statistics, pages 562–570, 2015.

[26] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. ArXiv 1502.03167, 2015.

[27] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann
machines. In International Conference on Machine Learning (ICML), pages 807–814, 2010.

[28] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research (JMLR), 15(1):1929–1958, 2014.

[29] PyTorch. http://pytorch.org.

[30] Vijay Kumar B. G., Gustavo Carneiro, and Ian Reid. Learning local image descriptors with deep
siamese and triplet convolutional networks by minimising global loss functions. In Conference
on Computer Vision and Pattern Recognition (CVPR), pages 5385–5394, 2016.

[31] Krystian Mikolajczyk, Tinne Tuytelaars, Cordelia Schmid, Andrew Zisserman, Jiri Matas,
Frederik Schaffalitzky, Timor Kadir, and Luc Van Gool. A comparison of affine region detectors.
International Journal of Computer Vision (IJCV), 65(1):43–72, 2005.

[32] D. Randall Wilson and Tony R. Martinez. The general inefficiency of batch training for gradient
descent learning. Neural Networks, 16(10):1429–1451, 2003.

[33] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman. Object
retrieval with large vocabularies and fast spatial matching. In Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1–8, 2007.

[34] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman. Lost in
quantization: Improving particular object retrieval in large scale image databases. In Conference
on Computer Vision and Pattern Recognition (CVPR), pages 1–8, 2008.

[35] Jiri Matas, Ondrej Chum, Martin Urban, and Tomas Pajdla. Robust wide baseline stereo from
maximally stable extrema regions. In British Machine Vision Conference (BMVC), pages
384–393, 2002.

[36] Michal Perdoch, Ondrej Chum, and Jiri Matas. Efficient representation of local geometry for
large scale object retrieval. In Conference on Computer Vision and Pattern Recognition (CVPR),
pages 9–16, 2009.

11

http://pytorch.org


[37] C. Lawrence Zitnick and Krishnan Ramnath. Edge foci interest points. In International
Conference on Computer Vision (ICCV), pages 359–366, 2011.

[38] Dmytro Mishkin, Jiri Matas, and Michal Perdoch. Mods: Fast and robust method for two-
view matching. Computer Vision and Image Understanding, 141:81 – 93, 2015. doi: https:
//doi.org/10.1016/j.cviu.2015.08.005.

[39] Daniel C. Hauagge and Noah Snavely. Image matching using local symmetry features. In
Computer Vision and Pattern Recognition (CVPR), pages 206–213, 2012.

[40] Gehua Yang, Charles V Stewart, Michal Sofka, and Chia-Ling Tsai. Registration of challenging
image pairs: Initialization, estimation, and decision. Pattern Analysis and Machine Intelligence
(PAMI), 29(11):1973–1989, 2007.

[41] Basura Fernando, Tatiana Tommasi, and Tinne Tuytelaars. Location recognition over large time
lags. Computer Vision and Image Understanding, 139:21 – 28, 2015. ISSN 1077-3142. doi:
https://doi.org/10.1016/j.cviu.2015.05.016.

[42] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Improving bag-of-features for large scale
image search. International Journal of Computer Vision (IJCV), 87(3):316–336, 2010.

[43] Giorgos Tolias and Herve Jegou. Visual query expansion with or without geometry: refining
local descriptors by feature aggregation. Pattern Recognition, 47(10):3466–3476, 2014.

[44] Herve Jegou, Matthijs Douze, and Cordelia Schmid. On the burstiness of visual elements. In
Computer Vision and Pattern Recognition (CVPR), pages 1169–1176, 2009.

[45] Herve Jegou, Cordelia Schmid, Hedi Harzallah, and Jakob Verbeek. Accurate image search
using the contextual dissimilarity measure. Pattern Analysis and Machine Intelligence (PAMI),
32(1):2–11, 2010.
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