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Abstract

Word embeddings are an effective tool to analyze language. They have been
recently extended to model other types of data beyond text, such as items in
recommendation systems. Embedding models consider the probability of a target
observation (a word or an item) conditioned on the elements in the context (other
words or items). In this paper, we show that conditioning on all the elements in the
context is not optimal. Instead, we model the probability of the target conditioned
on a learned subset of the elements in the context. We use amortized variational
inference to automatically choose this subset. Compared to standard embedding
models, this method improves predictions and the quality of the embeddings.

1 Introduction

Word embeddings are a powerful model to capture latent semantic structure of language. They
can capture the co-occurrence patterns of words (Bengio et al., 2006; Mikolov et al., 2013a,b,c;
Pennington et al., 2014; Mnih and Kavukcuoglu, 2013; Levy and Goldberg, 2014; Vilnis and
McCallum, 2015; Arora et al., 2016), which allows for reasoning about word usage and meaning
(Harris, 1954; Firth, 1957; Rumelhart et al., 1986). The ideas of word embeddings have been extended
to other types of high-dimensional data beyond text, such as items in a supermarket or movies in
a recommendation system (Liang et al., 2016; Barkan and Koenigstein, 2016), with the goal of
capturing the co-occurrence patterns of objects. Here, we focus on exponential family embeddings
(EFE) (Rudolph et al., 2016), a method that encompasses many existing methods for embeddings and
opens the door to bringing expressive probabilistic modeling (Bishop, 2006; Murphy, 2012) to the
problem of learning distributed representations.

In embedding models, the object of interest is the conditional probability of a target given its context.
For instance, in text, the target corresponds to a word in a given position and the context are the words
in a window around it. For an embedding model of items in a supermarket, the target corresponds to
an item in a basket and the context are the other items purchased in the same shopping trip.

In this paper, we show that conditioning on all elements of the context is not optimal. Intuitively,
this is because not all objects (words or items) necessarily interact with each other, though they may
appear together as target/context pairs. For instance, in shopping data, the probability of purchasing
chocolates should be independent of whether bathroom tissue is in the context, even if the latter is
actually purchased in the same shopping trip.

With this in mind, we build a generalization of the EFE model (Rudolph et al., 2016) that relaxes
the assumption that the target depends on all elements in the context. Rather, our model considers
that the target depends only on a subset of the elements in the context. We refer to our approach as
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context selection for exponential family embeddings (CS-EFE). Specifically, we introduce a binary
hidden vector to indicate which elements the target depends on. By inferring the indicator vector, the
embedding model is able to use more related context elements to fit the conditional distribution, and
the resulting learned vectors capture more about the underlying item relations.

The introduction of the indicator comes at the price of solving this inference problem. Most embedding
tasks have a large amount of target/context pairs and require a fast solution to the inference problem.
To avoid solving the inference problem separately for all target/context pairs, we use amortized
variational inference (Dayan et al., 1995; Gershman and Goodman, 2014; Korattikara et al., 2015;
Kingma and Welling, 2014; Rezende et al., 2014; Mnih and Gregor, 2014). We design a shared neural
network structure to perform inference for all pairs. One difficulty here is that the varied sizes of the
contexts require varied input and output sizes for the shared structure. We overcome this problem
with a binning technique, which we detail in Section 2.3.

Our contributions are as follows. First, we develop a model that allows conditioning on a subset of the
elements in the context in an EFE model. Second, we develop an efficient inference algorithm for the
CS-EFE model, based on amortized variational inference, which can automatically infer the subset of
elements in the context that are most relevant to predict the target. Third, we run a comprehensive
experimental study on three datasets, namely, MovieLens for movie recommendations, eBird-PA for
bird watching events, and grocery data for shopping behavior. We found that CS-EFE consistently
outperforms EFE in terms of held-out predictive performance on the three datasets. For MovieLens,
we also show that the embedding representations of the CS-EFE model have higher quality.

2 The Model

Our context selection procedure builds on models based on embeddings. We adopt the formalism
of exponential family embeddings (EFE) (Rudolph et al., 2016), which extend the ideas of word
embeddings to other types of data such as count or continuous-valued data. We briefly review the
EFE model in Section 2.1. We then describe our model in Section 2.2, and we put forward an efficient
inference procedure in Section 2.3.

2.1 Exponential Family Embeddings

In exponential family embeddings (EFE), we have a collection of J objects, such as words (in text
applications) or movies (in a recommendation problem). Our goal is to learn a vector representation
of these objects based on their co-occurrence patterns.

Let us consider a dataset represented as a (typically sparse) N × J matrix X, where rows are
datapoints and columns are objects. For example, in text applications each row corresponds to a
location in the text, and it is a one-hot vector that represents the word appearing in that location. In
movie data, each entry xnj indicates the rating of movie j for user n.

The EFE model learns the vector representation of objects based on the conditional probability of each
observation, conditioned on the observations in its context. The context cnj = [(n1, j1), (n2, j2), . . .]
gives the indices of the observations that appear in the conditional probability distribution of xnj .
The definition of the context varies across applications. In text, it corresponds to the set of words in a
fixed-size window centered at location n. In movie recommendation, cnj corresponds to the set of
movies rated by user n, excluding j.

In EFE, we represent each object j with two vectors: an embedding vector ρj and a context vector
αj . These two vectors interact in the conditional probability distributions of each observation xnj
as follows. Given the context cnj and the corresponding observations xcnj

indexed by cnj , the
distribution for xnj is in the exponential family,

p(xnj |xcnj ;α,ρ) = ExpFam
(
t(xnj), ηj(xcnj ;α,ρ)

)
, (1)

where t(xnj) is the sufficient statistic of the exponential family distribution, and ηj(xcnj ;α,ρ) is its
natural parameter. The natural parameter is set to

ηj(xcnj
;α,ρ) = g

ρ(0)j +
1

|cnj |
ρ>j

|cnj |∑
k=1

xnkjkαjk

 , (2)
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where |cnj | is the number of elements in the context, and g(·) is the link function (which depends
on the application and plays the same role as in generalized linear models). We consider a slightly
different form for ηj(xcnj ;α,ρ) than in the original EFE paper by including the intercept terms
ρ
(0)
j . We also average the elements in the context. These choices generally improve the model

performance.

The vectors αj and ρj (and the intercepts) are found by maximizing the pseudo-likelihood, i.e., the
product of the conditional probabilities in Eq. 1 for each observation xnj .

2.2 Context Selection for Exponential Family Embeddings

The base EFE model assumes that all objects in the context cnj play a role in the distribution of xnj
through Eq. 2. This is often an unrealistic assumption. The probability of purchasing chocolates
should not depend on the context vector of bathroom tissue, even when the latter is actually in the
context. Put formally, there are domains where the all elements in the context interact selectively in
the probability of xnj .

We now develop our context selection for exponential family embeddings (CS-EFE) model, which
selects a subset of the elements in the context for the embedding model, so that the natural parameter
only depends on objects that are truly related to the target object. For each pair (n, j), we introduce a
hidden binary vector bnj ∈ {0, 1}|cnj | that indicates which elements in the context cnj should be
considered in the distribution for xnj . Thus, we set the natural parameter as

ηj(xcnj ,bnj ;α,ρ) = g

ρ(0)j +
1

Bnj
ρ>j

|cnj |∑
k=1

bnjkxnkjkαjk

 , (3)

where Bnj =
∑

k bnjk is the number of non-zero elements of bnj .

The prior distribution. We assign a prior to bnj , such that Bnj ≥ 1 and

p(bnj ;πnj) ∝
∏
k

(πnjk)
bnjk(1− πnjk)1−bnjk . (4)

The constraint Bnj ≥ 1 states that at least one element in the context needs to be selected. For
values of bnj satisfying the constraint, their probabilities are proportional to those of independent
Bernoulli variables, with hyperparameters πnjk. If πnjk is small for all k (near 0), then the distribution
approaches a categorical distribution. If a few πnjk values are large (near 1), then the constraintBnj ≥
1 becomes less relevant and the distribution approaches a product of Bernoulli distributions.

The scale of the probabilities πnj has an impact on the number if elements to be selected as the
context. We let

πnjk ≡ πnj = πmin(1, β/|cnj |), (5)
where π ∈ (0, 1) is a global parameter to be learned, and β is a hyperparameter. The value of β
controls the average number of elements to be selected. If β tends to infinity and we hold π fixed to
1, then we recover the basic EFE model.

The objective function. We form the objective function L as the (regularized) pseudo log-likelihood.
After marginalizing out the variables bnj , it is

L = Lreg +
∑
n,j

log
∑
bnj

p(xnj |xcnj
,bnj ;α,ρ)p(bnj ;πnj), (6)

where Lreg is the regularization term. Following Rudolph et al. (2016), we use `2-regularization over
the embedding and context vectors.

It is computationally difficult to marginalize out the context selection variables bnj , particularly
when the cardinality of the context cnj is large. We address this issue in the next section.

2.3 Inference

We now show how to maximize the objective function in Eq. 6. We propose an algorithm based on
amortized variational inference, which shares a global inference network for all local variables bnk.
Here, we describe the inference method in detail.
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Variational inference. In variational inference, we introduce a variational distribution q(bnj ;νnj),
parameterized by νnj ∈ R|cnj |, and we maximize a lower bound L̃ of the objective in Eq. 6, L ≥ L̃,

L̃ = Lreg +
∑
n,j

Eq(bnj ;νnj)

[
log p(xnj |xcnj

,bnj ;α,ρ) + log p(bnj ;πnj)− log q(bnj ;νnj)
]
.

(7)
Maximizing this bound with respect to the variational parameters νnj corresponds to minimizing
the Kullback-Leibler divergence from the posterior of bnj to the variational distribution q(bnj ;νnj)
(Jordan et al., 1999; Wainwright and Jordan, 2008). Variational inference was also used for EFE by
Bamler and Mandt (2017).

The properties of this maximization problem makes this approach hard in our case. First, there is
no closed-form solution, even if we use a mean-field variational distribution. Second, the large size
of the dataset requires fast online training of the model. Generally, we cannot fit each q(bnj ;νnj)
individually by solving a set of optimization problems, nor even store νnj for later use.

To address the former problem, we use black-box variational inference (Ranganath et al., 2014),
which approximates the expectations via Monte Carlo to obtain noisy gradients of the variational
lower bound. To tackle the latter, we use amortized inference (Gershman and Goodman, 2014; Dayan
et al., 1995), which has the advantage that we do not need to store or optimize local variables.

Amortization. Amortized inference avoids the optimization of the parameter νnj for each local
variational distribution q(bnj ;νnj); instead, it fits a shared structure to calculate each local parameter
νnj . Specifically, we consider a function f(·) that inputs the target observation xnj , the context
elements xcnj

and indices cnj , and the model parameters, and outputs a variational distribution for
bnj . Let anj = [xnj , cnj ,xcnj ,α,ρ, πnj ] be the set of inputs of f(·), and let νnj ∈ R|cnj | be its
output, such that νnj = f(anj) is a vector containing the logits of the variational distribution,

q(bnjk = 1; νnjk) = sigmoid (νnjk) , with νnjk = [f(anj)]k. (8)

Similarly to previous work (Korattikara et al., 2015; Kingma and Welling, 2014; Rezende et al., 2014;
Mnih and Gregor, 2014), we let f(·) be a neural network, parameterized by W. The key in amortized
inference is to design the network and learn its parameters W.

Network design. Typical neural networks transform fixed-length inputs into fixed-length outputs.
However, in our case, we face variable size inputs and outputs. First, the output of the function f(·) for
q(bnj ;νnj) has length equal to the context size |cnj |, which varies across target/context pairs. Second,
the length of the local variables anj also varies, because the length of xcnj

depends on the number of
elements in the context. We propose a network design that addresses these challenges.

To overcome the difficulty of the varying output sizes, we split the computation of each component
νnjk of νnj into |cnj | separate tasks. Each task computes the logit νnjk using a shared function f(·),
νnjk = f(anjk). The input anjk contains information about anj and depends on the index k.

We now need to specify how we form the input anjk. A naïve approach would be to represent the
indices of the context items and their corresponding counts as a sparse vector, but this would require
a network with a very large input size. Moreover, most of the weights of this large network would not
be used (nor trained) in the computation of νnjk, since only a small subset of them would be assigned
a non-zero input.

Instead, in this work we use a two-step process to build an input vector anjk that has fixed
length regardless of the context size |cnj |. In Step 1, we transform the original input anj =
[xnj , cnj ,xcnj ,α,ρ, πnj ] into a vector of reduced dimensionality that preserves the relevant infor-
mation (we define “relevant” below). In Step 2, we transform the vector of reduced dimensionality
into a fixed-length vector.

For Step 1, we first need to determine which information is relevant. For that, we inspect the posterior
for bnj ,

p(bnj |xnj ,xcnj
;α,ρ, πnj) ∝ p(xnj |xcnj

,bnj ,bnj ;α,ρ)p(bnj ;πnj)

= p(xnj | snj ,bnj)p(bnj ;πnj).
(9)

We note that the dependence on xcnj
, α, and ρ comes through the scores snj , a vector of length |cnj |

that contains for each element the inner product of the corresponding embedding and context vector,
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Figure 1: Representation of the amortized inference network that outputs the variational parameter
for the context selection variable bnjk. The input has fixed size regardless of the context size, and
it is formed by the score snjk (Eq. 10), the prior parameter πnj , the target observation xnj , and a
histogram of the scores snjk′ (for k′ 6= k).

scaled by the context observation,

snjk = xnkjkρ
>
j αjk . (10)

Therefore, the scores snj are sufficient: f(·) does not need the raw embedding vectors as input, but
rather the scores snj ∈ R|cnj |. We have thus reduced the dimensionality of the input.

For Step 2, we need to transform the scores snj ∈ R|cnj | into a fixed-length vector that the neural
network f(·) can take as input. We represent this vector and the full neural network structure in
Figure 1. The transformation is carried out differently for each value of k. For the network that
outputs the variational parameter νnjk, we let the k-th score snjk be directly one of the inputs. The
reason is that the k-th score snjk is more related to νnjk, because the network that outputs νnjk
ultimately indicates the probability that bnjk takes value 1, i.e., νnjk indicates whether to include
the kth element as part of the context in the computation of the natural parameter in Eq. 3. All
other scores (snjk′ for k′ 6= k) have the same relation to νnjk, and their permutations give the same
posterior. We bin these scores (snjk′ , for k′ 6= k) into L bins, therefore obtaining a fixed-length
vector. Instead of using bins with hard boundaries, we use Gaussian-shaped kernels. We denote by
ω` and σ` the mean and width of each Gaussian kernel, and we denote by h

(k)
nj ∈ RL to the binned

variables, such that

h
(k)
nj` =

|cnj |∑
k′=1
k′ 6=k

exp

(
− (snjk′ − ω`)

2

σ2
`

)
. (11)

Finally, for νnjk = f(anjk) we form a neural network that takes as input the score snjk, the binned
variables h(k)

nj , which summarize the information of the scores (snjk′ : k′ 6= k), as well as the target

observation xnj and the prior probability πnj . That is, anjk = [snjk,h
(k)
nj , xnj , πnj ].

Variational updates. We denote by W the parameters of the network (all weights and biases). To
perform inference, we need to iteratively update W, together with α, ρ, and π, to maximize Eq. 7,
where νnj is the output of the network f(·). We follow a variational expectation maximization (EM)
algorithm. In the M step, we take a gradient step with respect to the model parameters (α, ρ, and
π). In the E step, we take a gradient step with respect to the network parameters (W). We obtain
the (noisy) gradient with respect to W using the score function method as in black-box variational
inference (Paisley et al., 2012; Mnih and Gregor, 2014; Ranganath et al., 2015), which allows
rewriting the gradient of Eq. 7 as an expectation with respect to the variational distribution,

∇L̃ =
∑
n,j

Eq(bnj ;W)

[ (
log p(xnj |xsnj

,bnj) + log p(bnj ;πnj)− log q(bnj ;W)
)
·

∇ log q(bnj ;W)
]
.

Then, we can estimate the gradient via Monte Carlo by drawing samples from q(bnj ;W).
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3 Empirical Study

We study the performance of context selection on three different application domains: movie rec-
ommendations, ornithology, and market basket analysis. On these domains, we show that context
selection improves predictions. For the movie data, we also show that the learned embeddings are
more interpretable; and for the market basket analysis, we provide a motivating example of the
variational probabilities inferred by the network.

Data. MovieLens: We consider the MovieLens-100K dataset (Harper and Konstan, 2015), which
contains ratings of movies on a scale from 1 to 5. We only keep those ratings with value 3 or more
(and we subtract 2 from all ratings, so that the counts are between 0 and 3). We remove users who
rated less than 20 movies and movies that were rated fewer than 50 times, yielding a dataset with 943
users and 811 movies. The average number of non-zeros per user is 82.2. We set aside 9% of the data
for validation and 10% for test.

eBird-PA: The eBird data (Munson et al., 2015; Sullivan et al., 2009) contains information about a
set of bird observation events. Each datum corresponds to a checklist of counts of 213 bird species
reported from each event. The values of the counts range from zero to hundreds. Some extraordinarily
large counts are treated as outliers and set to the mean of positive counts of that species. Bird
observations in the subset eBird-PA are from a rectangular area that mostly overlaps Pennsylvania
and the period from day 180 to day 210 of years from 2002 to 2014. There are 22, 363 checklists in
the data and 213 unique species. The average number of non-zeros per checklist is 18.3. We split the
data into train (67%), test (26%), and validation (7%) sets.

Market-Basket: This dataset contains purchase records of more than 3, 000 customers on an anony-
mous supermarket. We aggregate the purchases of one month at the category level, i.e., we combine
all individual UPC (Universal Product Code) items into item categories. This yields 45, 615 purchases
and 364 unique items. The average basket size is of 12.5 items. We split the data into training (86%),
test (5%), and validation (9%) sets.

Models. We compare the base exponential family embeddings (EFE) model (Rudolph et al., 2016)
with our context selection procedure. We implement the amortized inference network described in
Section 2.32, for different values of the prior hyperparameter β (Eq. 5) (see below).

For the movie data, in which the ratings range from 0 to 3, we use a binomial conditional distribution
(Eq. 1) with 3 trials, and we use an identity link function for the natural parameter ηj (Eq. 2), which is
the logit of the binomial probability. For the eBird-PA and Market-Basket data, which contain counts,
we consider a Poisson conditional distribution and use the link function3 g(·) = log softplus (·) for
the natural parameter, which is the Poisson log-rate. The context set corresponds to the set of other
movies rated by the same user in MovieLens; the set of other birds in the same checklist on eBird-PA;
and the rest of items in the same market basket.

Experimental setup. We explore different values for the dimensionalityK of the embedding vectors.
In our tables of results, we report the values that performed best in the validation set (there was no
qualitative difference in the relative performance between the methods for the non-reported results).
We use negative sampling (Rudolph et al., 2016) with a ratio of 1/10 of positive (non-zero) versus
negative samples. We use stochastic gradient descent to maximize the objective function, adaptively
setting the stepsize with Adam (Kingma and Ba, 2015), and we use the validation log-likelihood to
assess convergence. We consider unit-variance `2-regularization, and the weight of the regularization
term is fixed to 1.0.

In the context selection for exponential family embeddings (CS-EFE) model, we set the number of
hidden units to 30 and 15 for each of the hidden layers, and we consider 40 bins to form the histogram.
(We have also explored other settings of the network, obtaining very similar results.) We believe
that the network layers can adapt to different settings of the bins as long as they pick up essential
information of the scores. In this work, we place these 40 bins equally spaced by a distance of 0.2
and set the width to 0.1.

2The code is in the github repo: https://github.com/blei-lab/context-selection-embedding
3The softplus function is defined as softplus (x) = log(1 + exp(x)).

6

https://github.com/blei-lab/context-selection-embedding


Baseline: EFE CS-EFE (this paper)
K (Rudolph et al., 2016) β = 20 β = 50 β = 100 β =∞
10 -1.06 ( 0.01 ) -1.00 ( 0.01 ) -1.03 ( 0.01 ) -1.03 ( 0.01 ) -1.03 ( 0.01 )
50 -1.06 ( 0.01 ) -0.97 ( 0.01 ) -0.99 ( 0.01 ) -1.00 ( 0.01 ) -1.01 ( 0.01 )

(a) MovieLens-100K.

Baseline: EFE CS-EFE (this paper)
K (Rudolph et al., 2016) β = 2 β = 5 β = 10 β =∞
50 -1.74 ( 0.01 ) -1.34 ( 0.01 ) -1.33 ( 0.00 ) -1.51 ( 0.01 ) -1.34 ( 0.01 )
100 -1.74 ( 0.01 ) -1.34 ( 0.00 ) -1.33 ( 0.00 ) -1.31 ( 0.00 ) -1.31 ( 0.01 )

(b) eBird-PA.

Baseline: EFE CS-EFE (this paper)
K (Rudolph et al., 2016) β = 2 β = 5 β = 10 β =∞
50 -0.632 ( 0.003 ) -0.626 ( 0.003 ) -0.623 ( 0.003 ) -0.625 ( 0.003 ) -0.628 ( 0.003 )
100 -0.633 ( 0.003 ) -0.630 ( 0.003 ) -0.623 ( 0.003 ) -0.626 ( 0.003 ) -0.628 ( 0.003 )

(c) Market-Basket.

Table 1: Test log-likelihood for the three considered datasets. Our CS-EFE models consistently
outperforms the baseline for different values of the prior hyperparameter β. The numbers in brackets
indicate the standard errors.

In our experiments, we vary the hyperparameter β in Eq. 5 to check how the expected context size
(see Section 2.2) impacts the results. For the MovieLens dataset, we choose β ∈ {20, 50, 100,∞},
while for the other two datasets we choose β ∈ {2, 5, 10,∞}.
Results: Predictive performance. We compare the methods in terms of predictive pseudo log-
likelihood on the test set. We calculate the marginal log-likelihood in the same way as Rezende et al.
(2014). We report the average test log-likelihood on the three datasets in Table 1. The numbers are
the average predictive log-likelihood per item, together with the standard errors in brackets. We
compare the predictions of our models (in each setting) with the baseline EFE method using paired
t-test, obtaining that all our results are better than the baseline at a significance level p = 0.05. In the
table we only bold the best performance across different settings of β.

The results show that our method outperforms the baseline on all three datasets. The improvement
over the baseline is more significant on the eBird-PA datasets. We can also see that the prior parameter
β has some impact on the model’s performance.

Evaluation: Embedding quality. We also study how context selection affects the quality of the
embedding vectors of the items. In the MovieLens dataset, each movie has up to 3 genre labels. We
calculate movie similarities by their genre labels and check whether the similarities derived from the
embedding vectors are consistent with genre similarities.

More in detail, let gj ∈ {0, 1}G be a binary vector containing the genre labels for each movie j,
where G = 19 is the number of genres. We define the similarity between two genre vectors, gj and
gj′ , as the number of common genres normalized by the larger number genres,

sim(gj ,gj′) =
g>j gj′

max(1>gj ,1>gj′)
, (12)

where 1 is a vector of ones. In an analogous manner, we define the similarity of two embedding
vectors as their cosine distance.

We now compute the similarities of each movie to all other movies, according to both definitions
of similarity (based on genre and based on embeddings). For each query movie, we provide two
correlation metrics between both lists. The first metric is simply Spearman’s correlation between the
two ranked lists. For the second metric, we rank the movies based on the embedding similarity only,
and we calculate the average genre similarity of the top 5 movies. Finally, we average both metrics
across all possible query movies, and we report the results in Table 2.
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Baseline: EFE CS-EFE (this paper)
Metric (Rudolph et al., 2016) β = 20 β = 50 β = 100 β =∞

Spearmans 0.066 0.108 0.090 0.082 0.076
mean-sim@5 0.272 0.328 0.317 0.299 0.289

Table 2: Correlation between the embedding vectors and the movie genre. The embedding vectors
found with our CS-EFE model exhibit higher correlation with movie genres.

Target: Taco shells Target: Cat food dry

Taco shells − 0.219
Hispanic salsa 0.309 0.185

Tortilla 0.287 0.151
Hispanic canned food 0.315 0.221

Cat food dry 0.220 −
Cat food wet 0.206 0.297

Cat litter 0.225 0.347
Pet supplies 0.173 0.312

Table 3: Approximate posterior probabilities of the CS-EFE model for a basket with eight items
broken down into two unrelated clusters. The left column represents a basket of eight items of two
types, and then we take one item of each type as target in the other two columns. For a Mexican
food target, the posterior probabilities of the items in the Mexican type are larger compared to the
probabilities in the pet type, and vice-versa.

From this result, we can see that the similarity of the embedding vectors obtained by our model is
more consistent with the genre similarity. (We have also computed the top-1 and top-10 similarities,
which supports the same conclusion.) The result suggests a small number of context items are actually
better for learning relations of movies.

Evaluation: Posterior checking. To get more insight of the variational posterior distribution that our
model provides, we form a heterogeneous market basket that contains two types of items: Mexican
food, and pet-related products. In particular, we form a basket with four items of each of those types,
and we compute the variational distribution (i.e., the output of the neural network) for two different
target items from the basket. Intuitively, the Mexican food items should have higher probabilities
when the target item is also in the same type, and similarly for the pet food.

We fit the CS-EFE model with β = 2 on the Market-Basket data. We report the approximate posterior
probabilities in Table 3, for two query items (one from each type). As expected, the probabilities for
the items of the same type than the target are higher, indicating that their contribution to the context
will be higher.

4 Conclusion

The standard exponential family embeddings (EFE) model finds vector representations by fitting
the conditional distributions of objects conditioned on their contexts. In this work, we show that
choosing a subset of the elements in the context can improve performance when the objects in the
subset are truly related to the object to be modeled. As a consequence, the embedding vectors can
reflect co-occurrence relations with higher fidelity compared with the base embedding model.

We formulate the context selection problem as a Bayesian inference problem by using a hidden binary
vector to indicate which objects to select from each context set. This leads to a difficult inference
problem due to the (large) scale of the problems we face. We develop a fast inference algorithm by
leveraging amortization and stochastic gradients. The varying length of the binary context selection
vectors poses further challenges in our amortized inference algorithm, which we address using a
binning technique. We fit our model on three datasets from different application domains, showing
its superiority over the EFE model.

There are still many directions to explore to further improve the performance of the proposed context
selection for exponential family embeddings (CS-EFE). First, we can apply the context selection
technique on text data. Though the neighboring words of each target word are more likely to be the
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“correct” context, we can still combine the context selection technique with the ordering in which
words appear in the context, hopefully leading to better word representations. Second, we can explore
variational inference schemes that do not rely on mean-field, improving the inference network to
capture more complex variational distributions.
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