
Unsupervised Learning of Disentangled
Representations from Video

Emily Denton
Department of Computer Science

New York University
denton@cs.nyu.edu

Vighnesh Birodkar
Department of Computer Science

New York University
vighneshbirodkar@nyu.edu

Abstract

We present a new model DRNET that learns disentangled image representations
from video. Our approach leverages the temporal coherence of video and a novel
adversarial loss to learn a representation that factorizes each frame into a stationary
part and a temporally varying component. The disentangled representation can be
used for a range of tasks. For example, applying a standard LSTM to the time-vary
components enables prediction of future frames. We evaluate our approach on a
range of synthetic and real videos, demonstrating the ability to coherently generate
hundreds of steps into the future.

1 Introduction

Unsupervised learning from video is a long-standing problem in computer vision and machine
learning. The goal is to learn, without explicit labels, a representation that generalizes effectively to a
previously unseen range of tasks, such as semantic classification of the objects present, predicting
future frames of the video or classifying the dynamic activity taking place. There are several prevailing
paradigms: the first, known as self-supervision, uses domain knowledge to implicitly provide labels
(e.g. predicting the relative position of patches on an object [4] or using feature tracks [36]). This
allows the problem to be posed as a classification task with self-generated labels. The second general
approach relies on auxiliary action labels, available in real or simulated robotic environments. These
can either be used to train action-conditional predictive models of future frames [2, 20] or inverse-
kinematics models [1] which attempt to predict actions from current and future frame pairs. The
third and most general approaches are predictive auto-encoders (e.g.[11, 12, 18, 31]) which attempt
to predict future frames from current ones. To learn effective representations, some kind of constraint
on the latent representation is required.

In this paper, we introduce a form of predictive auto-encoder which uses a novel adversarial loss
to factor the latent representation for each video frame into two components, one that is roughly
time-independent (i.e. approximately constant throughout the clip) and another that captures the
dynamic aspects of the sequence, thus varying over time. We refer to these as content and pose
components, respectively. The adversarial loss relies on the intuition that while the content features
should be distinctive of a given clip, individual pose features should not. Thus the loss encourages
pose features to carry no information about clip identity. Empirically, we find that training with this
loss to be crucial to inducing the desired factorization.

We explore the disentangled representation produced by our model, which we call Disentangled-
Representation Net (DRNET), on a variety of tasks. The first of these is predicting future video
frames, something that is straightforward to do using our representation. We apply a standard LSTM
model to the pose features, conditioning on the content features from the last observed frame. Despite
the simplicity of our model relative to other video generation techniques, we are able to generate
convincing long-range frame predictions, out to hundreds of time steps in some instances. This is
significantly further than existing approaches that use real video data. We also show that DRNET can

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

be used for classification. The content features capture the semantic content of the video thus can be
used to predict object identity. Alternately, the pose features can be used for action prediction.

2 Related work

On account of its natural invariances, image data naturally lends itself to an explicit “what” and
“where” representation. The capsule model of Hinton et al. [10] performed this separation via
an explicit auto-encoder structure. Zhao et al. [40] proposed a multi-layered version, which has
similarities to ladder networks [23]. Several weakly supervised approaches have been proposed to
factor images into style and content (e.g. [19, 24]). These methods all operate on static images,
whereas our approach uses temporal structure to separate the components.

Factoring video into time-varying and time-independent components has been explored in many
settings. Classic structure-from-motion methods use an explicit affine projection model to extract a
3D point cloud and camera homography matrices [8]. In contrast, Slow Feature Analysis [38] has no
model, instead simply penalizing the rate of change in time-independent components and encouraging
their decorrelation. Most closely related to ours is Villegas et al. [33] which uses an unsupervised
approach to factoring video into content and motion. Their architecture is also broadly similar to
ours, but the loss functions differ in important ways. They rely on pixel/gradient space `p-norm
reconstructions, plus a GAN term [6] that encourages the generated frames to be sharp. We also use
an `2 pixel-space reconstruction. However, this pixel-space loss is only applied, in combination with
a novel adversarial term applied to the pose features, to learn the disentangled representation. In
contrast to [33], our forward model acts on latent pose vectors rather than predicting pixels directly.

Other approaches explore general methods for learning disentangled representations from video.
Kulkarni et al. [14] show how explicit graphics code can be learned from datasets with systematic
dimensions of variation. Whitney et al. [37] use a gating principle to encourage each dimension of
the latent representation to capture a distinct mode of variation. Grathwohl et al. [7] propose a deep
variational model to disentangle space and time in video sequences.

A range of generative video models, based on deep nets, have recently been proposed. Ranzato et
al. [22] adopt a discrete vector quantization approach inspired by text models. Srivastava et al. [31]
use LSTMs to generate entire frames. Video Pixel Networks [12] use these models is a conditional
manner, generating one pixel at a time in raster-scan order (similar image models include [27, 32]).
Finn et al. [5] use an LSTM framework to model motion via transformations of groups of pixels.
Cricri et al. [3] use a ladder of stacked-autoencoders. Other works predict optical flows fields that
can be used to extrapolate motion beyond the current frame, e.g. [17, 39, 35]. In contrast, a single
pose vector is predicted in our model, rather than a spatial field.

Chiappa et al. [2] and Oh et al. [20] focus on prediction in video game environments, where known
actions at each frame can be permit action-conditional generative models that can give accurate
long-range predictions. In contrast to the above works, whose latent representations combine both
content and motion, our approach relies on a factorization of the two, with a predictive model only
being applied to the latter. Furthermore, we do not attempt to predict pixels directly, instead applying
the forward model in the latent space. Chiappa et al. [2], like our approach, produces convincing
long-range generations. However, the video game environment is somewhat more constrained than
the real-world video we consider since actions are provided during generation.

Several video prediction approaches have been proposed that focus on handling the inherent uncer-
tainty in predicting the future. Mathieu et al. [18] demonstrate that a loss based on GANs can produce
sharper generations than traditional `2-based losses. [34] train a series of models, which aim to span
possible outcomes and select the most likely one at any given instant. While we considered GAN-
based losses, the more constrained nature of our model, and the fact that our forward model does not
directly generate in pixel-space, meant that standard deterministic losses worked satisfactorily.

3 Approach

In our model, two separate encoders produce distinct feature representations of content and pose for
each frame. They are trained by requiring that the content representation of frame xt and the pose
representation of future frame xt+k can be combined (via concatenation) and decoded to predict the
pixels of future frame xt+k. However, this reconstruction constraint alone is insufficient to induce

2

the desired factorization between the two encoders. We thus introduce a novel adversarial loss on the
pose features that prevents them from being discriminable from one video to another, thus ensuring
that they cannot contain content information. A further constraint, motivated by the notion that
content information should vary slowly over time, encourages temporally close content vectors to be
similar to one another.

More formally, let xi = (x1i , ..., x
T
i) denote a sequence of T images from video i. We subsequently

drop index i for brevity. Let Ec denote a neural network that maps an image xt to the content
representation htc which captures structure shared across time. Let Ep denote a neural network that
maps an image xt to the pose representation htp capturing content that varies over time. Let D denote
a decoder network that maps a content representation from a frame, htc, and a pose representation
ht+k
p from future time step t + k to a prediction of the future frame x̃t+k. Finally, C is the scene

discriminator network that takes pairs of pose vectors (h1, h2) and outputs a scalar probability that
they came from the same video or not.

The loss function used during training has several terms:

Reconstruction loss: We use a standard per-pixel `2 loss between the predicted future frame x̃t+k

and the actual future frame xt+k for some random frame offset k ∈ [0,K]:

Lreconstruction(D) = ||D(htc, h
t+k
p)− xt+k||22 (1)

Note that many recent works on video prediction that rely on more complex losses that can capture
uncertainty, such as GANs [19, 6].

Similarity loss: To ensure the content encoder extracts mostly time-invariant representations, we
penalize the squared error between the content features htc, h

t+k
c of neighboring frames k ∈ [0,K]:

Lsimilarity(Ec) = ||Ec(x
t)− Ec(x

t+k)||22 (2)

Adversarial loss: We now introduce a novel adversarial loss that exploits the fact that the objects
present do not typically change within a video, but they do between different videos. Our desired
disenanglement would thus have the content features be (roughly) constant within a clip, but distinct
between them. This implies that the pose features should not carry any information about the identity
of objects within a clip.

We impose this via an adversarial framework between the scene discriminator network C and pose
encoder Ep, shown in Fig. 1. The latter provides pairs of pose vectors, either computed from the same
video (htp,i, h

t+k
p,i) or from different ones (htp,i, h

t+k
p,j), for some other video j. The discriminator then

attempts to classify the pair as being from the same/different video using a cross-entropy loss:

−Ladversarial(C) = log(C(Ep(x
t
i), Ep(x

t+k
i))) + log(1− C(Ep(x

t
i), Ep(x

t+k
j))) (3)

The other half of the adversarial framework imposes a loss function on the pose encoder Ep that tries
to maximize the uncertainty (entropy) of the discriminator output on pairs of frames from the same
clip:

−Ladversarial(Ep) =
1

2
log(C(Ep(x

t
i), Ep(x

t+k
i))) +

1

2
log(1− C(Ep(x

t
i), Ep(x

t+k
i))) (4)

Thus the pose encoder is encouraged to produce features that the discriminator is unable to classify if
they come from the same clip or not. In so doing, the pose features cannot carry information about
object content, yielding the desired factorization. Note that this does assume that the object’s pose is
not distinctive to a particular clip. While adversarial training is also used by GANs, our setup purely
considers classification; there is no generator network, for example.

Overall training objective:
During training we minimize the sum of the above losses, with respect to Ec, Ep, D and C:

L = Lreconstruction(Ec, Ep, D)+αLsimilarity(Ec)+β(Ladversarial(Ep)+Ladversarial(C)) (5)

where α and β are hyper-parameters. The first three terms can be jointly optimized, but the discrim-
inator C is updated while the other parts of the model (Ec, Ep, D) are held constant. The overall
model is shown in Fig. 1. Details of the training procedure and model architectures for Ec, Ep, D
and C are given in Section 4.1.

3

Target 1
(same scene)

Target 0
(different scenes)

Pose encoder: E
p
(x) Scene discriminator:

C(E
p
(x), E

p
(x’))

Target 1
(same scene)

Target 0
(different scenes)

Pose encoder: E
p
(x) Scene discriminator:

D(E
p
(x), E

p
(x’))

...

...

...

...

L
BCE

L
BCE

x
i
t

x
i
t+k

x
i
t

x
j
t+k

Pose encoder: E
p
(x)

L
similarity

L
reconstruction

Content encoder: E
c
(x)

Frame decoder:
D(E

c
(xt), E

p
(xt+k))

xt+k

xt+k’

xt

xt+k

x t+k
~

Target=0.5

(maximal
uncertainty)

L
adversarial

Figure 1: Left: The discriminator C is trained with binary cross entropy (BCE) loss to predict if a
pair of pose vectors comes from the same (top portion) or different (lower portion) scenes. xi and xj
denote frames from different sequences i and j. The frame offset k is sampled uniformly in the range
[0,K]. Note that when C is trained, the pose encoder Ep is fixed. Right: The overall model, showing
all terms in the loss function. Note that when the pose encoder Ep is updated, the scene discriminator
is held fixed.

Pose encoder: E
p
(x)

L
similarity

Content encoder: E
c
(x)

Frame decoder: D(E
c
(xt), E

p
(xt+k))

L
linearity

xt+k+
2

xt+k+
1

xt

xt+k

x t+k~

Target 1/
2

(maximal
uncertainty)

L
adversary

Scene discriminator not updated, only
used for pose encoder loss

E
c

xt

LSTM

h
c
t

h
c
t

E
p

xt-1

h
p

 t-1

D

h
p
 t

~

LSTM

h
c
t

E
p

h
p
t

h
p

 t+1
~

LSTM

h
c
t h

p
 t+1
~

h
c
t

D

LSTM

h
c
t h

p
 t+2

~

h
c
t h

p
 t+3

~~
h

p
 t+2

D

h
c
t

xt

x t+3~
x t+2~

x t+1~

Figure 2: Generating future frames by recurrently predicting hp, the latent pose vector.

3.1 Forward Prediction

After training, the pose and content encoders Ep and Ec provide a representation which enables
video prediction in a straightforward manner. Given a frame xt, the encoders produce htp and htc
respectively. To generate the next frame, we use these as input to an LSTM model to predict the next
pose features ht+1

p . These are then passed (along with the content features) to the decoder, which
generates a pixel-space prediction x̃t+1:

h̃t+1
p = LSTM(Ep(x

t), htc) x̃t+1 = D(h̃t+1
p , htc) (6)

h̃t+2
p = LSTM(h̃t+1

p , htc) x̃t+2 = D(h̃t+2
p , htc) (7)

Note that while pose estimates are generated in a recurrent fashion, the content features htc remain
fixed from the last observed real frame. This relies on the nature of Lreconstruction which ensured
that content features can be combined with future pose vectors to give valid reconstructions.

The LSTM is trained separately from the main model using a standard `2 loss between h̃t+1
p and

ht+1
p . Note that this generative model is far simpler than many other recent approaches, e.g. [12].

This largely due to the forward model being applied within our disentangled representation, rather
than directly on raw pixels.

3.2 Classification

Another application of our disentangled representation is to use it for classification tasks. Content
features, which are trained to be invariant to local temporal changes, can be used to classify the
semantic content of an image. Conversely, a sequence of pose features can be used to classify actions
in a video sequence. In either case, we train a two layer classifier network S on top of either hc or hp,
with its output predicting the class label y.

4

4 Experiments

We evaluate our model on both synthetic (MNIST, NORB, SUNCG) and real (KTH Actions) video
datasets. We explore several tasks with our model: (i) the ability to cleanly factorize into content and
pose components; (ii) forward prediction of video frames using the approach from Section 3.1; (iii)
using the pose/content features for classification tasks.

4.1 Model details

We explored a variety of convolutional architectures for the content encoder Ec, pose encoder Ep

and decoder D. For MNIST, Ec, Ep and D all use a DCGAN architecture [21] with |hp| = 5 and
|hc| = 128. The encoders consist of 5 convolutional layers with subsampling. Batch normalization
and Leaky ReLU’s follow each convolutional layer except the final layer which normalizes the
pose/content vectors to have unit norm. The decoder is a mirrored version of the encoder with 5
deconvolutional layers and a sigmoid output layer.

For both NORB and SUNCG, D is a DCGAN architecture while Ec and Ep use a ResNet-18
architecture [9] up until the final pooling layer with |hp| = 10 and |hc| = 128.

For KTH, Ep uses a ResNet-18 architecture with |hp| = 24. Ec uses the same architecture as VGG16
[29] up until the final pooling layer with |hc| = 128. The decoder is a mirrored version of the content
encoder with pooling layers replaced with spatial up-sampling. In the style of U-Net [25], we add
skip connections from the content encoder to the decoder, enabling the model to easily generate static
background features.

In all experiments the scene discriminator C is a fully connected neural network with 2 hidden layers
of 100 units. We trained all our models with the ADAM optimizer [13] and learning rate η = 0.002.
We used β = 0.1 for MNIST, NORB and SUNCG and β = 0.0001 for KTH experiments. We used
α = 1 for all datasets.

For future prediction experiments we train a two layer LSTM with 256 cells using the ADAM
optimizer. On MNIST, we train the model by observing 5 frames and predicting 10 frames. On KTH,
we train the model by observing 10 frames and predicting 10 frames.

4.2 Synthetic datasets

MNIST: We start with a toy dataset consisting of two MNIST digits bouncing around a 64x64
image. Each video sequence consists of a different pair of digits with independent trajectories.
Fig. 3(left) shows how the content vector from one frame and the pose vector from another generate
new examples that transfer the content and pose from the original frames. This demonstrates the
clean disentanglement produced by our model. Interestingly, for this data we found it to be necessary
to use a different color for the two digits. Our adversarial term is so aggressive that it prevents the

actionDim=5-latentDi
m=128-maxStep=8-a
dvWeight=0-normaliz
e=true-ngf=64-ndf=64
-model=basic-output=
sigmoid-linWeight=0

3 51 9 126 18 2115 50 10024 200 500

...

...

...

...

...

...

Input frames Generated frames

...

Figure 3: Left: Demonstration of content/pose factorization on held out MNIST examples. Each
image in the grid is generated using the pose and content vectors hp and hc taken from the corre-
sponding images in the top row and first column respectively. The model has clearly learned to
disentangle content and pose. Right: Each row shows forward modeling up to 500 time steps into the
future, given 5 initial frames. For each generation, note that only the pose part of the representation is
being predicted from the previous time step (using an LSTM), with the content vector being fixed
from the 5th frame. The generations remain crisp despite the long-range nature of the predictions.

5

Figure 4: Left: Factorization examples using our DRNET model on held out NORB images. Each
image in the grid is generated using the pose and content vectors hp and hc taken from the corre-
sponding images in the top row and first column respectively. Center: Examples where DRNET was
trained without the adversarial loss term. Note how content and pose are no longer factorized cleanly:
the pose vector now contains content information which ends up dominating the generation. Right:
factorization examples from Mathieu et al. [19].

x1 x2Interpolations

Figure 5: Left: Examples of linear interpolation in pose space between the examples x1 and x2.
Right: Factorization examples on held out images from the SUNCG dataset. Each image in the grid
is generated using the pose and content vectors hp and hc taken from the corresponding images in
the top row and first column respectively. Note how, even for complex objects, the model is able to
rotate them accurately.

pose vector from capturing any content information, thus without a color cue the model is unable to
determine which pose information to associate with which digit. In Fig. 3(right) we perform forward
modeling using our representation, demonstrating the ability to generate crisp digits 500 time steps
into the future.

NORB: We apply our model to the NORB dataset [16], converted into videos by taking sequences of
different azimuths, while holding object identity, lighting and elevation constant. Fig. 4.2(left) shows
that our model is able to factor content and pose cleanly on held out data. In Fig. 4.2(center) we train
a version of our model without the adversarial loss term, which results in a significant degradation in
the model and the pose vectors are no longer isolated from content. For comparison, we also show the
factorizations produced by Mathieu et al. [19], which are less clean, both in terms of disentanglement
and generation quality than our approach. Table 1 shows classification results on NORB, following
the training of a classifier on pose features and also content features. When the adversarial term is
used (β = 0.1) the content features perform well. Without the term, content features become less
effective for classification.

SUNCG: We use the rendering engine from the SUNCG dataset [30] to generate sequences where
the camera rotates around a range of 3D chair models. The dataset consists of 324 different chair
models of varying size, shape and color. DRNET learns a clean factorization of content and pose and
is able to generate high quality examples of this dataset, as shown in Fig. 4.2(right).

6

