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Abstract

We propose an efficient method to estimate the accuracy of classifiers using only
unlabeled data. We consider a setting with multiple classification problems where
the target classes may be tied together through logical constraints. For example, a
set of classes may be mutually exclusive, meaning that a data instance can belong to
at most one of them. The proposed method is based on the intuition that: (i) when
classifiers agree, they are more likely to be correct, and (ii) when the classifiers
make a prediction that violates the constraints, at least one classifier must be making
an error. Experiments on four real-world data sets produce accuracy estimates
within a few percent of the true accuracy, using solely unlabeled data. Our models
also outperform existing state-of-the-art solutions in both estimating accuracies,
and combining multiple classifier outputs. The results emphasize the utility of
logical constraints in estimating accuracy, thus validating our intuition.

1 Introduction

Estimating the accuracy of classifiers is central to machine learning and many other fields. Accuracy
is defined as the probability of a system’s output agreeing with the true underlying output, and thus
is a measure of the system’s performance. Most existing approaches to estimating accuracy are
supervised, meaning that a set of labeled examples is required for the estimation. Being able to
estimate the accuracies of classifiers using only unlabeled data is important for many applications,
including: (i) any autonomous learning system that operates under no supervision, as well as (ii)
crowdsourcing applications, where multiple workers provide answers to questions, for which the
correct answer is unknown. Furthermore, tasks which involve making several predictions which are
tied together by logical constraints are abundant in machine learning. As an example, we may have
two classifiers in the Never Ending Language Learning (NELL) project [Mitchell et al., 2015] which
predict whether noun phrases represent animals or cities, respectively, and we know that something
cannot be both an animal and a city (i.e., the two categories are mutually exclusive). In such cases, it
is not hard to observe that if the predictions of the system violate at least one of the constraints, then
at least one of the system’s components must be wrong. This paper extends this intuition and presents
an unsupervised approach (i.e., only unlabeled data are needed) for estimating accuracies that is able
to use information provided by such logical constraints. Furthermore, the proposed approach is also
able to use any available labeled data, thus also being applicable to semi-supervised settings.
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Logical Constraints

shark

animal 99%
fish 95%
bird 5%

. . .

sparrow

animal 95%
fish 10%
bird 26%
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Classifier #1

shark

animal 99%
fish 95%
bird 5%

. . .

sparrow

animal 95%
fish 2%
bird 84%

. . .
. . .

Classifier #2

Instance Category Probability

Classifier Outputs

. . .
SUB(animal, fish) ^ ¬f̂animal

1 (shark) ^ ffish(shark) ! eanimal1

. . .

ME(fish, bird) ^ f̂fish
1 (sparrow) ^ fbird(sparrow) ! efish1

Ground Rules

f̂animal
1 (shark) = 0.99

f̂fish
1 (shark) = 0.95

f̂bird
1 (shark) = 0.05

f̂animal
1 (sparrow) = 0.95

f̂fish
1 (sparrow) = 0.10

f̂bird
1 (sparrow) = 0.26

. . .

SUB(animal, fish) = 1

SUB(animal, bird) = 1

ME(fish, bird) = 1

eanimal1

efish1

ebird1

. . .

fanimal(shark)

ffish(shark)

fbird(shark)

fanimal(sparrow)

ffish(sparrow)

fbird(sparrow)

Observed Unobserved

Error Rates Combined Predictions
Results

Classifier #1
animal 1%
fish 5%
bird 57%

. . .

Classifier #2
animal 1%
fish 2%
bird 9%

. . .
. . .

sparrow

animal 95%
fish 4%
bird 75%

. . .

shark

animal 99%
fish 95%
bird 8%

. . .

. . .

Grounding
Inputs: Predicted probability for 
each classifier-object-category.
Outputs: Set of object-category 
classification pairs and category-
classifier error-rate pairs that are 
not directly constrained to be 0 
or 1 from the logical constraints.
Description: Section 3.3.2.

Probabilistic Inference
Inputs: Ground predicates and rules.
Step 1: Create a Markov Random Field (MRF).
Step 2: Perform probabilistic inference to obtain the most likely values for the 
unobserved ground predicates. Inference is performed using a modified 
version of the Probabilistic Soft Logic (PSL) framework.
Outputs: Classifier error rates and underlying function values.
Description: Section 3.3.

Ground Predicates

Figure 1: System overview diagram. The classifier outputs (corresponding to the function approx-
imation outputs) and the logical constraints make up the system inputs. The representation of the
logical constraints in terms of the function approximation error rates is described in section 3.2. In
the logical constraints box, blue arrows represent subsumption constraints, and labels connected by
a red dashed line represent a mutually exclusive set. Given the inputs, the first step is grounding
(computing all feasible ground predicates and rules that the system will need to perform inference
over) and is described in section 3.3.2. In the ground rules box, ∧, ¬,→ correspond to the logic AND,
OR, and IMPLIES. Then, inference is performed in order to infer the most likely truth values of the
unobserved ground predicates, given the observed ones and the ground rules (described in detail in
section 3.3). The results constitute the outputs of our system and they include: (i) the estimated error
rates, and (ii) the most likely target function outputs (i.e., combined predictions).

We consider a “multiple approximations” problem setting in which we have several different ap-
proximations, f̂d1 , . . . , f̂

d
Nd , to a set of target boolean classification functions, fd : X 7→ {0, 1} for

d = 1, . . . , D, and we wish to know the true accuracies of each of these different approximations,
using only unlabeled data, as well as the response of the true underlying functions, fd. Each value
of d characterizes a different domain (or problem setting) and each domain can be interpreted as a
class or category of objects. Similarly, the function approximations can be interpreted as classifying
inputs as belonging or not to these categories. We consider the case where we may have a set of
logical constraints defined over the domains. Note that, in contrast with related work, we allow the
function approximations to provide soft responses in the interval [0, 1] (as opposed to only allowing
binary responses — i.e., they can now return the probability for the response being 1), thus allowing
modeling of their “certainty”. As an example of this setting, to which we will often refer throughout
this paper, let us consider a part of NELL, where the input space of our functions, X , is the space of
all possible noun phrases (NPs). Each target function, fd, returns a boolean value indicating whether
the input NP belongs to a category, such as “city” or “animal”, and these categories correspond to our
domains. There also exist logical constraints between these categories that may be hard (i.e., strongly
enforced) or soft (i.e., enforced in a probabilistic manner). For example, “city” and “animal” may
be mutually exclusive (i.e., if an object belongs to “city”, then it is unlikely that it also belongs to
“animal”). In this case, the function approximations correspond to different classifiers (potentially
using a different set of features / different views of the input data), which may return a probability
for a NP belonging to a class, instead of a binary value. Our goal is to estimate the accuracies of
these classifiers using only unlabeled data. In order to quantify accuracy, we define the error rate of
classifier j in domain d as edj , PD[f̂dj (X) 6= fd(X)], for the binary case, for j = 1, . . . , Nd, where
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D is the true underlying distribution of the input data. Note that accuracy is equal to one minus error
rate. This definition may be relaxed for the case where f̂dj (X) ∈ [0, 1] representing a probability:
edj , f̂dj (X)PD[fd(X) 6=1] + (1− f̂dj (X))PD[fd(X) 6=0], which resembles an expected probabil-
ity of error. Even though our work is motivated by the use of logical constraints defined over the
domains, we also consider the setting where there are no such constraints.

2 Related Work

The literature covers many projects related to estimating accuracy from unlabeled data. The setting
we are considering was previously explored by Collins and Singer [1999], Dasgupta et al. [2001],
Bengio and Chapados [2003], Madani et al. [2004], Schuurmans et al. [2006], Balcan et al. [2013],
and Parisi et al. [2014], among others. Most of their approaches made some strong assumptions,
such as assuming independence given the outputs, or assuming knowledge of the true distribution
of the outputs. None of the previous approaches incorporated knowledge in the form of logical
constraints. Collins and Huynh [2014] review many methods that were proposed for estimating the
accuracy of medical tests in the absence of a gold standard. This is effectively the same problem that
we are considering, applied to the domains of medicine and biostatistics. They present a method
for estimating the accuracy of tests, where these tests are applied in multiple different populations
(i.e., different input data), while assuming that the accuracies of the tests are the same across the
populations, and that the test results are independent conditional on the true “output”. These are
similar assumptions to the ones made by several of the other papers already mentioned, but the idea
of applying the tests to multiple populations is new and interesting. Platanios et al. [2014] proposed a
method relaxing some of these assumptions. They formulated the problem of estimating the error
rates of several approximations to a function as an optimization problem that uses agreement rates
of these approximations over unlabeled data. Dawid and Skene [1979] were the first to formulate
the problem in terms of a graphical model and Moreno et al. [2015] proposed a nonparametric
extension to that model applied to crowdsourcing. Tian and Zhu [2015] proposed an interesting
max-margin majority voting scheme for combining classifier outputs, also applied to crowdsourcing.
However, all of these approaches were outperformed by the models of Platanios et al. [2016], which
are most similar to the work of Dawid and Skene [1979] and Moreno et al. [2015]. To the best of
our knowledge, our work is the first to use logic for estimating accuracy from unlabeled data and, as
shown in our experiments, outperforms all competing methods. Logical constraints provide additional
information to the estimation method and this partially explains the performance boost.

3 Proposed Method

Our method consists of: (i) defining a set of logic rules for modeling the logical constraints between
the fd and the f̂dj , in terms of the error rates edj and the known logical constraints, and (ii) performing
probabilistic inference using these rules as priors, in order to obtain the most likely values of the
edj and the fd, which are not observed. The intuition behind the method is that if the constraints
are violated for the function approximation outputs, then at least one of these functions has to be
making an error. For example, in the NELL case, if two function approximations respond that a
NP belongs to the “city” and the “animal” categories, respectively, then at least one of them has to
be making an error. We define the form of the logic rules in section 3.2 and then describe how to
perform probabilistic inference over them in section 3.3. An overview of our system is shown in
figure 1. In the next section we introduce the notion of probabilistic logic, which fuses classical logic
with probabilistic reasoning and that forms the backbone of our method.

3.1 Probabilistic Logic

In classical logic, we have a set of predicates (e.g., mammal(x) indicating whether x is a mammal,
where x is a variable) and a set of rules defined in terms of these predicates (e.g., mammal(x) →
animal(x), where “→” can be interpreted as “implies”). We refer to predicates and rules defined for
a particular instantiation of their variables as ground predicates and ground rules, respectively (e.g.,
mammal(whale) and mammal(whale) → animal(whale)). These ground predicates and rules take
boolean values (i.e., are either true or false — for rules, the value is true if the rule holds). Our goal
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is to infer the most likely values for a set of unobserved ground predicates, given a set of observed
ground predicate values and logic rules.

In probabilistic logic, we are instead interested in inferring the probabilities of these ground predicates
and rules being true, given a set of observed ground predicates and rules. Furthermore, the truth
values of ground predicates and rules may be continuous and lie in the interval [0, 1], instead of being
boolean, representing the probability that the corresponding ground predicate or rule is true. In this
case, boolean logic operators, such as AND (∧), OR (∨), NOT (¬), and IMPLIES (→), need to be
redefined. For the next section, we will assume their classical logical interpretation.

3.2 Model

As described earlier, our goal is to estimate the true accuracies of each of the function approximations,
f̂d1 , . . . , f̂

d
Nd for d = 1, . . . , D, using only unlabeled data, as well as the response of the true

underlying functions, fd. We now define the logic rules that we perform inference over in order to
achieve that goal. The rules are defined in terms of the following predicates, for d = 1, . . . , D:

• Function Approximation Outputs: f̂dj (X), defined over all approximations j = 1, . . . , Nd, and
inputs X ∈ X , for which the corresponding function approximation has provided a response. Note
that the values of these ground predicates lie in [0, 1] due to their probabilistic nature (i.e., they do
not have to be binary, as in related work), and some of them are observed.

• Target Function Outputs: fd(X), defined over all inputs X ∈ X . Note that, in the purely
unsupervised setting, none of these ground predicate values are observed, in contrast with the
semi-supervised setting.

• Function Approximation Error Rates: edj , defined over all approximations j = 1, . . . , Nd. Note
that none of these ground predicate values are observed. The primary goal of this paper is to infer
their values.

The goal of the logic rules we define is two-fold: (i) to combine the function approximation outputs
in a single output value, and (ii) to account for the logical constraints between the domains. We aim
to achieve both goals while accounting for the error rates of the function approximations. We first
define a set of rules that relate the function approximation outputs with the true underlying function
output. We call this set of rules the ensemble rules and we describe them in the following section.
We then discuss how to account for the logical constraints between the domains.

3.2.1 Ensemble Rules

This first set of rules specifies a relation between the target function outputs, fd(X), and the function
approximation outputs, f̂dj (X), independent of the logical constraints:

f̂dj (X) ∧ ¬edj→fd(X), ¬f̂dj (X) ∧ ¬edj→¬fd(X), (1)

f̂dj (X) ∧ edj→¬fd(X), and ¬f̂dj (X) ∧ edj→fd(X), (2)

for d = 1, . . . , D, j = 1, . . . , Nd, and X ∈ X . In words: (i) the first set of rules state that if a
function approximation is not making an error, its output should match the output of the target
function, and (ii) the second set of rules state that if a function approximation is making an error, its
output should not match the output of the target function.

An interesting point to make is that the ensemble rules effectively constitute a weighted majority
vote for combining the function approximation outputs, where the weights are determined by the
error rates of the approximations. These error rates are implicitly computed based on agreement
between the function approximations. This is related to the work of Platanios et al. [2014]. There,
the authors try to answer the question of whether consistency in the outputs of the approximations
implies correctness. They directly use the agreement rates of the approximations in order to estimate
their error rates. Thus, there exists an interesting connection in our work in that we also implicitly
use agreement rates to estimate error rates, and our results, even though improving upon theirs
significantly, reinforce their claim.

Identifiability. Let us consider flipping the values of all error rates (i.e., setting them to one minus
their value) and the target function responses. Then, the ensemble logic rules would evaluate to
the same value as before (e.g., satisfied or unsatisfied). Therefore, the error rates and the target
function values are not identifiable when there are no logical constraints. As we will see in the next
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section, the constraints may sometimes help resolve this issue as, often, the corresponding logic
rules do not exhibit that kind of symmetry. However, for cases where that symmetry exists, we
can resolve it by assuming that most of the function approximations have error rates better than
chance (i.e., < 0.5). This can be done by considering the two rules: (i) f̂dj (X) → fd(X), and
¬f̂dj (X) → ¬fd(X), for d = 1, . . . , D, j = 1, . . . , Nd, and X ∈ X . Note that all that these rules
imply is that f̂dj (X) = fd(X) (i.e., they represent the prior belief that function approximations are
correct). As will be discussed in section 3.3, in probabilistic frameworks where rules are weighted
with a real value in [0, 1], these rules will be given a weight that represents their significance or
strength. In such a framework, we can consider using a smaller weight for these prior belief rules,
compared to the remainder of the rules, which would simply correspond to a regularization weight.
This weight can be a tunable or even learnable parameter.

3.2.2 Constraints

The space of possible logical constraints is huge; we do not deal with every possible constraint in
this paper. Instead, we focus our attention on two types of constraints that are abundant in structured
prediction problems in machine learning, and which are motivated by the use of our method in the
context of NELL:

• Mutual Exclusion: If domains d1 and d2 are mutually exclusive, then fd1 = 1 implies that fd2 = 0.
For example, in the NELL setting, if a NP belongs to the “city” category, then it cannot also belong
to the “animal” category.

• Subsumption: If d1 subsumes d2, then if fd2 = 1, we must have that fd1 = 1. For example, in
the NELL setting, if a NP belongs to the “cat” category, then it must also belong to the “animal”
category.

This set of constraints is sufficient to model most ontology constraints between categories in NELL,
as well as a big subset of the constraints more generally used in practice.

Mutual Exclusion Rule. We first define the predicate ME(d1, d2), indicating that domains d1 and
d2 are mutually exclusive1. This predicate has value 1 if domains d1 and d2 are mutually exclusive,
and value 0 otherwise, and its truth value is observed for all values of d1 and d2. Furthermore, note
that it is symmetric, meaning that if ME(d1, d2) is true, then ME(d2, d1) is also true. We define the
mutual exclusion logic rule as:

ME(d1, d2) ∧ f̂d1
j (X) ∧ fd2(X)→ ed1

j , (3)

for d1 6= d2 = 1, . . . , D, j = 1, . . . , Nd1 , and X ∈ X . In words, this rule says that if fd2(X) = 1
and domains d1 and d2 are mutually exclusive, then f̂d1

j (X) must be equal to 0, as it is an approxi-
mation to fd1(X) and ideally we want that f̂d1

j (X) = fd1(X). If that is not the case, then f̂d1
j must

be making an error.

Subsumption Rule. We first define the predicate SUB(d1, d2), indicating that domain d1 subsumes
domain d2. This predicate has value 1 if domain d1 subsumes domain d2, and 0 otherwise, and its
truth value is always observed. Note that, unlike mutual exclusion, this predicate is not symmetric.
We define the subsumption logic rule as:

SUB(d1, d2) ∧ ¬f̂d1
j (X) ∧ fd2(X)→ ed1

j , (4)

for d1, d2 = 1, . . . , D, j = 1, . . . , Nd1 , and X ∈ X . In words, this rule says that if fd2(X) = 1 and
d1 subsumes d2, then f̂d1

j (X) must be equal to 1, as it is an approximation to fd1(X) and ideally we
want that f̂d1

j (X) = fd1(X). If that is not the case, then f̂d1
j must be making an error.

Having defined all of the logic rules that comprise our model, we now describe how to perform
inference under such a probabilistic logic model, in the next section. Inference in this case comprises
determining the most likely truth values of the unobserved ground predicates, given the observed
predicates and the set of rules that comprise our model.

1A set of mutually-exclusive domains can be reduced to pairwise ME constraints for all pairs in that set.
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3.3 Inference

In section 3.1 we introduced the notion of probabilistic logic and we defined our model in terms
of probabilistic predicates and rules. In this section we discuss in more detail the implications of
using probabilistic logic, and the way in which we perform inference in our model. There exist
various probabilistic logic frameworks, each making different assumptions. In what is arguably the
most popular such framework, Markov Logic Networks (MLNs) [Richardson and Domingos, 2006],
inference is performed over a constructed Markov Random Field (MRF) based on the model logic
rules. Each potential function in the MRF corresponds to a ground rule and takes an arbitrary positive
value when the ground rule is satisfied and the value 0 otherwise (the positive values are often called
rule weights and can be either fixed or learned). Each variable is boolean-valued and corresponds
to a ground predicate. MLNs are thus a direct probabilistic extension to boolean logic. It turns out
that due to the discrete nature of the variables in MLNs, inference is NP-hard and can thus be very
inefficient. Part of our goal in this paper is for our method to be applicable at a very large scale (e.g.,
for systems like NELL). We thus resorted to Probabilistic Soft Logic (PSL) [Bröcheler et al., 2010],
which can be thought of as a convex relaxation of MLNs.

Note that the model proposed in the previous section, which is also the primary contribution of this
paper, can be used with various probabilistic logic frameworks. Our choice, which is described in
this section, was motivated by scalability. One could just as easily perform inference for our model
using MLNs, or any other such framework.

3.3.1 Probabilistic Soft Logic (PSL)

In PSL, models, which are composed of a set of logic rules, are represented using hinge-loss
Markov random fields (HL-MRFs) [Bach et al., 2013]. In this case, inference amounts to solving a
convex optimization problem. Variables of the HL-MRF correspond to soft truth values of ground
predicates. Specifically, a HL-MRF, f , is a probability density over m random variables, Y =
{Y1, . . . , Ym} with domain D = [0, 1]m, corresponding to the unobserved ground predicate values.
Let X = {X1, . . . , Xn} be an additional set of variables with known values in the domain [0, 1]n,
corresponding to observed ground predicate values. Let φ = {φ1, . . . , φk} be a finite set of k
continuous potential functions of the form φj(X,Y) = (max {`j(X,Y), 0})pj , where `j is a linear
function of X and Y, and pj ∈ {1, 2}. We will soon see how these functions relate to the ground
rules of the model. Given the above, for a set of non-negative free parameters λ = {λ1, . . . , λk} (i.e.,
the equivalent of MLN rule weights), the HL-MRF density is defined as:

f(Y) =
1

Z
exp−

k∑
j=1

λjφj(X,Y), (5)

where Z is a normalizing constant so that f is a proper probability density function. Our goal is to
infer the most probable explanation (MPE), which consists of the values of Y that maximize the
likelihood of our data2. This is equivalent to solving the following convex problem:

min
Y∈[0,1]m

k∑
j=1

λjφj(X,Y). (6)

Each variable Xi or Yi corresponds to a soft truth value (i.e., Yi ∈ [0, 1]) of a ground predicate.
Each function `j corresponds to a measure of the distance to satisfiability of a logic rule. The set
of rules used is what characterizes a particular PSL model. The rules represent prior knowledge
we might have about the problem we are trying to solve. For our model, these rules were defined
in section 3.2. As mentioned above, variables are allowed to take values in the interval [0, 1]. We
thus need to define what we mean by the truth value of a rule and its distance to satisfiability. For
the logical operators AND (∧), OR (∨), NOT (¬), and IMPLIES (→), we use the definitions from
Łukasiewicz Logic [Klir and Yuan, 1995]: P ∧Q , max {P +Q− 1, 0}, P ∨Q , min {P +Q, 1},
¬P , 1− P , and P → Q , min{1− P +Q, 1}. Note that these operators are a simple continuous
relaxation of the corresponding boolean operators, in that for boolean-valued variables, with 0
corresponding to FALSE and 1 to TRUE, they are equivalent. By writing all logic rules in the form
B1 ∧B2 ∧ · · · ∧Bs → H1 ∨H2 ∨ · · · ∨Ht, it is easy to observe that the distance to satisfiability

2As opposed to performing marginal inference which aims to infer the marginal distribution of these values.
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Animal

Vertebrate Invertebrate

River LakeCity CountryBird Fish Mammal Arthropod Mollusk

Location

Figure 2: Illustration of the NELL-11 data set constraints. Each box represents a label, each blue
arrow represents a subsumption constraint, and each set of labels connected by a red dashed line
represents a mutually exclusive set of labels. For example, Animal subsumes Vertebrate and
Bird, Fish, and Mammal are mutually exclusive.

(i.e., 1 minus its truth value) of a rule evaluates to max {0,∑s
i=1Bi −

∑t
j=1Ht + 1− s}. Note

that any set of rules of first-order predicate logic can be represented in this form [Bröcheler et al.,
2010], and that minimizing this quantity amounts to making the rule “more satisfied”.

In order to complete our system description we need to describe: (i) how to obtain a set of ground
rules and predicates from a set of logic rules of the form presented in section 3.2 and a set of
observed ground predicates, and define the objective function of equation 6, and (ii) how to solve
the optimization problem of that equation to obtain the most likely truth values for the unobserved
ground predicates. These two steps are described in the following two sections.

3.3.2 Grounding

Grounding is the process of computing all possible groundings of each logic rule to construct the
inference problem variables and the objective function. As already described in section 3.3.1, the
variables X and Y correspond to ground predicates and the functions `j correspond to ground rules.
The easiest way to ground a set of logic rules would be to go through each one and create a ground
rule instance of it, for each possible value of its arguments. However, if a rule depends on n variables
and each variable can takem possible values, thenmn ground rules would be generated. For example,
the mutual exclusion rule of equation 3 depends on d1, d2, j, and X , meaning that D2×Nd1×|X|
ground rule instances would be generated, where |X| denotes the number of values that X can
take. The same applies to predicates; f̂d1

j (X) would result in D×Nd1×|X| ground instances,
which would become variables in our optimization problem. This approach would thus result in a
huge optimization problem rendering it impractical when dealing with large scale problems such as
NELL. The key to scaling up the grounding procedure is to notice that many of the possible ground
rules are always satisfied (i.e., have distance to satisfiability equal to 0), irrespective of the values
of the unobserved ground predicates that they depend upon. These ground rules would therefore
not influence the optimization problem solution and can be safely ignored. Since in our model we
are only dealing with a small set of predefined logic rule forms, we devised a heuristic grounding
procedure that only generates those ground rules and predicates that may influence the optimization.
Our grounding algorithm is shown in the supplementary material and is based on the idea that a
ground rule is only useful if the function approximation predicate that appears in its body is observed.
It turns out that this approach is orders of magnitude faster than existing state-of-the-art solutions
such as the grounding solution used by Niu et al. [2011].

3.3.3 Solving the Optimization Problem

For large problems, the objective function of equation 6 will be a sum of potentially millions of
terms, each one of which only involving a small set of variables. In PSL, the method used to solve
this optimization problem is based on the consensus Alternating Directions Method of Multipliers
(ADMM). The approach consists of handling each term in that sum as a separate optimization
problem using copies of the corresponding variables, while adding the constraint that all copies of
each variable must be equal. This allows for solving the subproblems completely in parallel and
is thus scalable. The algorithm is summarized in the supplementary material. More details on this
algorithm and on its convergence properties can be found in the latest PSL paper [Bach et al., 2015].
We propose a stochastic variation of this consensus ADMM method that is even more scalable.

During each iteration, instead of solving all subproblems and aggregating their solutions in the
consensus variables, we sample K << k subproblems to solve. The probability of sampling each
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Table 1: Mean absolute deviation (MAD) of the error rate rankings and the error rate estimates (lower
MAD is better), and area under the curve (AUC) of the label estimates (higher AUC is better). The
best results for each experiment, across all methods, are shown in bolded text and the results for our
proposed method are highlighted in blue.

NELL-7 NELL-11
MADerror rank MADerror AUCtarget MADerror rank MADerror AUCtarget

MAJ 7.71 0.238 0.372 7.54 0.303 0.447
AR-2 12.0 0.261 0.378 10.8 0.350 0.455

AR 11.4 0.260 0.374 11.1 0.350 0.477
BEE 6.00 0.231 0.314 5.69 0.291 0.368

CBEE 6.00 0.232 0.314 5.69 0.291 0.368
HCBEE 5.03 0.229 0.452 5.14 0.324 0.462

LEE 3.71 0.152 0.508 4.77 0.180 0.615

×10−2 uNELL-All uNELL-10%
MADerror rank MADerror AUCtarget MADerror rank MADerror AUCtarget

MAJ 23.3 0.47 99.9 33.3 0.54 87.7
GIBBS-SVM 102.0 2.05 28.6 101.7 2.15 28.2

GD-SVM 26.7 0.42 71.3 93.3 1.90 67.8
DS 170.0 7.08 12.1 180.0 6.96 12.3

AR-2 48.3 2.63 96.7 50.0 2.56 96.4
AR 48.3 2.60 96.7 48.3 2.52 96.4

BEE 40.0 0.60 99.8 31.7 0.64 79.5
CBEE 40.0 0.61 99.8 118.0 45.40 55.4

HCBEE 81.7 2.53 99.4 81.7 2.45 84.9
LEE 30.0 0.37 96.5 30.0 0.43 97.3

×10−1 uBRAIN-All uBRAIN-10%
MADerror rank MADerror AUCtarget MADerror rank MADerror AUCtarget

MAJ 8.76 0.57 8.49 1.52 0.68 7.84
GIBBS-SVM 7.77 0.43 4.65 1.51 0.66 5.28

GD-SVM 7.60 0.44 5.24 1.50 0.68 8.56
DS 7.77 0.44 8.76 1.32 0.63 4.59

AR-2 16.40 0.87 9.71 2.28 0.97 9.89
BEE 7.98 0.40 9.32 1.38 0.63 9.35

CBEE 10.90 0.43 9.34 1.77 0.89 9.30
HCBEE 28.10 0.85 9.20 3.25 0.97 9.37

LEE 7.60 0.38 9.95 1.32 0.47 9.98

subproblem is proportional to the distance of its variable copies from the respective consensus
variables. The intuition and motivation behind this approach is that at the solution of the optimization
problem, all variable copies should be in agreement with the consensus variables. Therefore, priori-
tizing subproblems whose variables are in greater disagreement with the consensus variables might
facilitate faster convergence. Indeed, this modification to the inference algorithm allowed us to apply
our method to the NELL data set and obtain results within minutes instead of hours.

4 Experiments

Our implementation as well as the experiment data sets are available at https://github.com/
eaplatanios/makina.

Data Sets. First, we considered the following two data sets with logical constraints:

• NELL-7: Classify noun phrases (NPs) as belonging to a category or not (categories correspond
to domains in this case). The categories considered for this data set are Bird, Fish, Mammal,
City, Country, Lake, and River. The only constraint considered is that all these categories
are mutually exclusive.

• NELL-11: Perform the same task, but with the categories and constraints illustrated in figure 2.

For both of these data sets, we have a total of 553,940 NPs and 6 classifiers, which act as our function
approximations and are described in [Mitchell et al., 2015]. Not all of the classifiers provide a
response every input NP. In order to show the applicability of our method in cases where there are no
logical constraints between the domains, we also replicated the experiments of Platanios et al. [2014]:

• uNELL: Same task as NELL-7, but without considering the constraints and using 15 categories, 4
classifiers, and about 20,000 NPs per category.
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• uBRAIN: Classify which of two 40 second long story passages corresponds to an unlabeled 40
second time series of Functional Magnetic Resonance Imaging (fMRI) neural activity. 11 classifiers
were used and the domain in this case is defined by 11 different locations in the brain, for each of
which we have 924 examples. Additional details can be found in [Wehbe et al., 2014].

Methods. Some of the methods we compare against do not explicitly estimate error rates. Rather,
they combine the classifier outputs to produce a single label. For these methods, we produce an
estimate of the error rate using these labels and compare against this estimate.

1. Majority Vote (MV): This is the most intuitive method and it consists of taking the most common
output among the provided function approximation responses, as the combined output.

2. GIBBS-SVM/GD-SVM: Methods of Tian and Zhu [2015].
3. DS: Method of Dawid and Skene [1979].
4. Agreement Rates (AR): This is the method of Platanios et al. [2014]. It estimates error rates

but does not infer the combined label. To that end, we use a weighted majority vote, where the
classifiers’ predictions are weighted according to their error rates in order to produce a single
output label. We also compare against a method denoted by AR-2 in our experiments, which is
the same method, except only pairwise function approximation agreements are considered.

5. BEE/CBEE/HCBEE: Methods of Platanios et al. [2016].

In the results, LEE stands for Logic Error Estimation and refers to the proposed method of this paper.

Evaluation. We compute the sample error rate estimates using the true target function labels (which
are always provided), and we then compute three metrics for each domain and average over domains:

• Error Rank MAD: We rank the function approximations by our estimates and by the sample
estimates to produce two vectors with the ranks. We then compute the mean absolute deviation
(MAD) between the two vectors, where by MAD we mean the `1 norm of the vectors’ difference.
• Error MAD: MAD between the vector of our estimates and the vector of the sample estimates,

where each vector is indexed by the function approximation index.
• Target AUC: Area under the precision-recall curve for the inferred target function values, relative

to the true function values that are observed.

Results. First, note that the largest execution time of our method among all data sets was about 10
minutes, using a 2013 15-inch MacBook Pro. The second best performing method, HCBEE, required
about 100 minutes. This highlights the scalability of our approach. Results are shown in table 1.

1. NELL-7 and NELL-11 Data Sets: In this case we have logical constraints and thus, this set of
results is most relevant to the central research claims in this paper (our method was motivated by
the use of such logical constraints). It is clear that our method outperforms all existing methods,
including the state-of-the-art, by a significant margin. Both the MADs of the error rate estimation,
and the AUCs of the target function response estimation, are significantly better.

2. uNELL and uBRAIN Data Sets: In this case there exist no logical constraints between the domains.
Our method still almost always outperforms the competing methods and, more specifically, it
always does so in terms of error rate estimation MAD. This set of results makes it clear that our
method can also be used effectively in cases where there are no logical constraints.
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