
YASS: Yet Another Spike Sorter

JinHyung Lee1, David Carlson2, Hooshmand Shokri1, Weichi Yao1, Georges Goetz3, Espen Hagen4,
Eleanor Batty1, EJ Chichilnisky3, Gaute Einevoll5, and Liam Paninski1

1Columbia University, 2Duke University, 3Stanford University, 4University of Oslo, 5Norwegian
University of Life Sciences

Abstract

Spike sorting is a critical first step in extracting neural signals from large-scale
electrophysiological data. This manuscript describes an efficient, reliable pipeline
for spike sorting on dense multi-electrode arrays (MEAs), where neural signals
appear across many electrodes and spike sorting currently represents a major
computational bottleneck. We present several new techniques that make dense MEA
spike sorting more robust and scalable. Our pipeline is based on an efficient multi-
stage “triage-then-cluster-then-pursuit” approach that initially extracts only clean,
high-quality waveforms from the electrophysiological time series by temporarily
skipping noisy or “collided” events (representing two neurons firing synchronously).
This is accomplished by developing a neural network detection method followed
by efficient outlier triaging. The clean waveforms are then used to infer the set
of neural spike waveform templates through nonparametric Bayesian clustering.
Our clustering approach adapts a “coreset” approach for data reduction and uses
efficient inference methods in a Dirichlet process mixture model framework to
dramatically improve the scalability and reliability of the entire pipeline. The
“triaged” waveforms are then finally recovered with matching-pursuit deconvolution
techniques. The proposed methods improve on the state-of-the-art in terms of
accuracy and stability on both real and biophysically-realistic simulated MEA data.
Furthermore, the proposed pipeline is efficient, learning templates and clustering
faster than real-time for a ' 500-electrode dataset, largely on a single CPU core.

1 Introduction

The analysis of large-scale multineuronal spike train data is crucial for current and future neuroscience
research. These analyses are predicated on the existence of reliable and reproducible methods that
feasibly scale to the increasing rate of data acquisition. A standard approach for collecting these data
is to use dense multi-electrode array (MEA) recordings followed by “spike sorting” algorithms to
turn the obtained raw electrical signals into spike trains.

A crucial consideration going forward is the ability to scale to massive datasets: MEAs currently scale
up to the order of 104 electrodes, but efforts are underway to increase this number to 10

6 electrodes1.
At this scale any manual processing of the obtained data is infeasible. Therefore, automatic spike
sorting for dense MEAs has enjoyed significant recent attention [15, 9, 51, 24, 36, 20, 33, 12]. Despite
these efforts, spike sorting remains the major computational bottleneck in the scientific pipeline when
using dense MEAs, due both to the high computational cost of the algorithms and the human time
spent on manual postprocessing.

To accelerate progress on this critical scientific problem, our proposed methodology is guided by
several main principles. First, robustness is critical, since hand-tuning and post-processing is not

1DARPA Neural Engineering System Design program BAA-16-09

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Algorithm 1 Pseudocode for the complete proposed pipeline.
Input: time-series of electrophysiological data V 2 RT⇥C , locations 2 R3

[waveforms, timestamps] Detection(V) % (Section 2.2)
% “Triage” noisy waveforms and collisions (Section 2.4):
[cleanWaveforms, cleanTimestamps] Triage(waveforms, timestamps)
% Build a set of representative waveforms and summary statistics (Section 2.5)
[representativeWaveforms, sufficientStatistics] coresetConstruction(cleanWaveforms)
% DP-GMM clustering via divide-and-conquer (Sections 2.6 and 2.7)
[{representativeWaveforms

i

, sufficientStatistics
i

}
i=1,...

]

 splitIntoSpatialGroups(representativeWaveforms, sufficientStatistics, locations)
for i=1,. . . do % Run efficient inference for the DP-GMM

[clusterAssignments
i

] SplitMergeDPMM(representativeWaveforms
i

, sufficientStatistics
i

)

end for
% Merge spatial neighborhoods and similar templates
[allClusterAssignments, templates]
mergeTemplates({clusterAssignments

i

}
i=1,...

, {representativeWaveforms
i

}
i=1,...

, locations)
% Pursuit stage to recover collision and noisy waveforms
[finalTimestamps, finalClusterAssignments] deconvolution(templates)
return [finalTimestamps, finalClusterAssignments]

feasible at scale. Second, scalability is key. To feasibly process the oncoming data deluge, we use
efficient data summarizations wherever possible and focus computational power on the “hard cases,”
using cheap fast methods to handle easy cases. Next, the pipeline should be modular. Each stage in
the pipeline has many potential feasible solutions, and the pipeline is improved by rapidly iterating
and updating each stage as methodology develops further. Finally, prior information is leveraged
as much as possible; we share information across neurons, electrodes, and experiments in order to
extract information from the MEA datastream as efficiently as possible.

We will first outline the methodology that forms the core of our pipeline in Section 2.1, and then we
demonstrate the improvements in performance on simulated data and a 512-electrode recording in
Section 3. Further supporting results appear in the appendix.

2 Methods

2.1 Overview

The inputs to the pipeline are the band-pass filtered voltage recordings from all C electrodes and
their spatial layout, and the end result of the pipeline is the set of K (where K is determined by
the algorithm) binary neural spike trains, where a “1” in the time series reflects a neural action
potential from the kth neuron at the corresponding time point. The voltage signals are spatially
whitened prior to processing and are modeled as the superposition of action potentials and background
Gaussian noise [12]. Spatial whitening is performed by removing potential spikes using amplitude
thresholding and estimating the whitening filter under a Gaussianity assumption. Succinctly, the
pipeline is a multistage procedure as follows: (i) detecting waveforms and extracting features, (ii)
screening outliers and collided waveforms, (iii) clustering, and (iv) inferring missed and collided
spikes. Pseudocode for the flow of the pipeline can be found in Algorithm 1. A brief overview is
below, followed by additional details.

Our overall strategy can be considered a hybrid of a matching pursuit approach (similar to that
employed by [36]) and a classical clustering approach, generalized and adapted to the large dense
MEA setting. Our guiding philosophy is that it is essential to properly handle “collisions” between
simultaneous spikes [37, 12], since collisions distort the extracted feature space and hinder clustering.
A typical approach to this issue utilizes matching pursuit methods (or other sparse deconvolution
strategies), but these methods are relatively computationally expensive compared to clustering
primitives. This led us to a “triage-then-cluster-then-pursuit” approach: we “triage” collided or overly
noisy waveforms, putting them aside during the feature extraction and clustering stages, and later
recover these spikes during a final “pursuit” or deconvolution stage. The triaging begins during
the detection stage in Section 2.2, where we develop a neural network based detection method that

2

significantly improves sensitivity and selectivity. For example, on a simulated 30 electrode dataset
with low SNR, the new approach reduces false positives and collisions by 90% for the same rate of
true positives. Furthermore, the neural network is significantly better at the alignment of signals,
which improves the feature space and signal-to-noise power. The detected waveforms then are
projected to a feature space and restricted to a local spatial subset of electrodes as in [24] in Section
2.3. Next, in Section 2.4 an outlier detection method further “triages” the detected waveforms and
reduces false positives and collisions by an additional 70% while removing only a small percentage
of real detections. All of these steps are achievable in nearly linear time. Simulations demonstrate
that this large reduction in false positives and collisions dramatically improves accuracy and stability.

Following the above steps, the remaining waveforms are partitioned into distinct neurons via cluster-
ing. Our clustering framework is based on the Dirichlet Process Gaussian Mixture Model (DP-GMM)
approach [48, 9], and we modify existing inference techniques to improve scalability and performance.
Succinctly, each neuron is represented by a distinct Gaussian distribution in the feature space. Directly
calculating the clustering on all of the channels and all of the waveforms is computationally infeasible.
Instead, the inference first utilizes the spatial locality via masking [24] from Section 2.3. Second, the
inference procedure operates on a coreset of representative points [13] and the resulting approximate
sufficient statistics are used in lieu of the full dataset (Section 2.5). Remarkably, we can reduce a
dataset with 100k points to a coreset of ' 10k points with trivial accuracy loss. Next, split and merge
methods are adapted to efficiently explore the clustering space [21, 24] in Section 2.6. Using these
modern scalable inference techniques is crucial for robustness because they empirically find much
more sensible and accurate optima and permit Bayesian characterization of posterior uncertainty.

For very large arrays, instead of operating on all channels simultaneously, each distinct spatial
neighborhood is processed by a separate clustering algorithm that may be run in parallel. This
parallelization is crucial for processing very large arrays because it allows greater utilization of
computer resources (or multiple machines). It also helps improve the efficacy of the split-merge
inference by limiting the search space. This divide-and-conquer approach and the post-processing
to stitch the results together is discussed in Section 2.7. The computational time required for the
clustering algorithm scales nearly linearly with the number of electrodes C and the experiment time.

After the clustering stage is completed, the means of clusters are used as templates and collided and
missed spikes are inferred using the deconvolution (or “pursuit” [37]) algorithm from Kilosort [36],
which recovers the final set of binary spike trains. We limit this computationally expensive approach
only to sections of the data that are not well handled by the rest of the pipeline, and use the faster
clustering approach to fill in the well-explained (i.e. easy) sections.

We note finally that when memory is limited compared to the size of the dataset, the preprocessing,
spike detection, and final deconvolution steps are performed on temporal minibatches of data; the
other stages operate on significantly reduced data representations, so memory management issues
typically do not arise here. See Section B.4 for further details on memory management.

2.2 Detection

The detection stage extracts temporal and spatial windows around action potentials from the noisy
raw electrophysiological signal V to use as inputs in the following clustering stage. The number
of clean waveform detections (true positives) should be maximized for a given level of detected
collision and noise events (false positives). Because collisions corrupt feature spaces [37, 12] and
will simply be recovered during pursuit stage, they are not included as true positives at this stage. In
contrast to the plethora of prior work on hand-designed detection rules (detailed in Section C.1), we
use a data-driven approach with neural networks to dramatically improve both detection efficacy and
alignment quality. The neural network is trained to return only clean waveforms on real data, not
collisions, so it de facto performs a preliminary triage prior to the main triage stage in Section 2.4.

The crux of the data-driven approach is the availability of prior training data. We are targeting the
typical case that an experimental lab performs repeated experiments using the same recording setup
from day to day. In this setting hand-curated or otherwise validated prior sorts are saved, resulting
in abundant training data for a given experimental preparation. In the supplemental material, we
discuss the construction of a training set (including data augmentation approaches) in Section C.2, the
architecture and training of the network in Section C.3, the detection using the network in Section C.4,
empirical performance in Section C.5, and scalability in Section C.5. This strategy is effective when

3

this training data exists; however, many research groups are currently using single electrodes and do
not have dense MEA training data. Thus it is worth emphasizing that here we train the detector only
on a single electrode. We have also experimented with training and evaluating on multiple electrodes
with good success; however, these results are more specialized and are not shown here.

A key result is that our neural network dramatically improves both the temporal and spatial alignment
of detected waveforms. This improved alignment improves the fidelity of the feature space and the
signal-to-noise power, and the result of the improved feature space can clearly be seen by comparing
the detected waveform features from one standard detection approach (SpikeDetekt [24]) in Figure
1 (left) to the detected waveform features from our neural network in Figure 1 (middle). Note that the
output of the neural net detection is remarkably more Gaussian compared to SpikeDetekt.

2.3 Feature Extraction and Mask Creation

Following detection we have a collection of N events defined as X
n

2 RR⇥C for n = 1, . . . , N ,
each with an associated detection time t

n

. Recall that C is the total number of electrodes, and R is the
number of time samples, in our case chosen to correspond to 1.5ms. Next features are extracted by
using uncentered Principal Components Analysis (PCA) on each channel separately with P features
per channel. Each waveform X

n

is transformed to the feature space Y

n

. To handle duplicate spikes,
Y

n

is kept only if c
n

= argmax{||y
nc

||
c2N

c

n

}, where N
c

n

contains all electrodes in the local
neighborhood of electrode c

n

. To address the increasing dimensionality, spikes are localized by using
the sparse masking vector {m

n

} 2 [0, 1]

C method of [24], where the mask should be set to 1 only
where the signal exists. The sparse vector reduces the dimensionality and facilitates sparse updates to
improve computational efficiency. We give additional mathematical details in Supplemental Section
D. We have also experimented with an autoencoder framework to standardize the feature extraction
across channels and facilitate online inference. This approach performed similarly to PCA and is not
shown here, but will be addressed in depth in future work.

2.4 Collision Screening and Outlier Triaging

Many collisions and outliers remain even after our improved detection algorithm. Because these
events destabilize the clustering algorithms, the pipeline benefits from a “triage” stage to further
screen collisions and noise events. Note that triaging out a small fraction of true positives is a minor
concern at this stage because they will be recovered in the final deconvolution step.

We use a two-fold approach to perform this triaging. First, obvious collisions with nearly overlapping
spike times and spatial locations are removed. Second, k-Nearest Neighbors (k-NN) is used to
detect outliers in the masked feature space based on [27]. To develop a computationally efficient and
effective approach, waveforms are grouped based on their primary (highest-energy) channel, and then
k-NN is run for each channel. Empirically, these approximations do not suffer in efficacy compared
to using the full spatial area. When the dimensionality of P , the number of features per channel, is
low, a kd-tree can find neighbors in O(N logN) average time. We demonstrate that this method is
effective for triaging false positives and collisions in Figure 1 (middle).

2.5 Coreset Construction

“Big data” improves density estimates for clustering, but the cost per iteration naively scales with the
amount of data. However, often data has some redundant features, and we can take advantage of
these redundancies to create more efficient summarizations of the data. Then running the clustering
algorithm on the summarized data should scale only with the number of summary points. By choosing
representative points (or a “coreset") carefully we can potentially describe huge datasets accurately
with a relatively small number of points [19, 13, 2].

There is a sizable literature on the construction of coresets for clustering problems; however, the
number of required representative points to satisfy the theoretical guarantees is infeasible in this
problem domain. Instead, we propose a simple approach to build coresets that empirically outperforms
existing approaches in our experiments by forcing adequate coverage of the complete dataset. We
demonstrate in Supplemental Figure S6 that this approach can cover clusters completely missed by
existing approaches, and show the chosen representative points on data in Figure 1 (right). This
algorithm is based on recursively performing k-means; we provide pseudocode and additional details

4

