
On-the-fly Operation Batching
in Dynamic Computation Graphs

Graham Neubig⇤
Language Technologies Institute

Carnegie Mellon University
gneubig@cs.cmu.edu

Yoav Goldberg⇤
Computer Science Department

Bar-Ilan University
yogo@cs.biu.ac.il

Chris Dyer
DeepMind

cdyer@google.com

Abstract

Dynamic neural network toolkits such as PyTorch, DyNet, and Chainer offer more
flexibility for implementing models that cope with data of varying dimensions and
structure, relative to toolkits that operate on statically declared computations (e.g.,
TensorFlow, CNTK, and Theano). However, existing toolkits—both static and
dynamic—require that the developer organize the computations into the batches
necessary for exploiting high-performance algorithms and hardware. This batching
task is generally difficult, but it becomes a major hurdle as architectures become
complex. In this paper, we present an algorithm, and its implementation in the
DyNet toolkit, for automatically batching operations. Developers simply write
minibatch computations as aggregations of single instance computations, and the
batching algorithm seamlessly executes them, on the fly, using computationally
efficient batched operations. On a variety of tasks, we obtain throughput similar to
that obtained with manual batches, as well as comparable speedups over single-
instance learning on architectures that are impractical to batch manually.2

1 Introduction

Modern CPUs and GPUs evaluate batches of arithmetic operations significantly faster than the
sequential evaluation of the same operations. For example, performing elementwise operations takes
nearly the same amount of time on the GPU whether operating on tens or on thousands of elements,
and multiplying a few hundred different vectors by the same matrix is significantly slower than
executing a single (equivalent) matrix–matrix product using an optimized GEMM implementation on
either a GPU or a CPU. Thus, careful grouping of operations into batches that can execute efficiently
in parallel is crucial for making the most of available hardware resources.

Today, developers who write code to train neural networks are responsible for crafting most of this
batch handling by hand. In some cases this is easy: when inputs and outputs are naturally represented
as fixed sized tensors (e.g., images of a fixed size such those in the MNIST and CIFAR datasets, or
regression problems on fixed sized vector inputs), and the computations required to process each
instance are instance-invariant and expressible as standard operations on tensors (e.g., a series of
matrix multiplications, convolutions, and elementwise nonlinearities), a suitably flexible tensor library

⇤Authors contributed equally.
2The proposed algorithm is implemented in DyNet (http://dynet.io/), and can be activated by using the

“--dynet-autobatch 1” command line flag.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



RNN RNN RNN RNN

RNN RNN

RNN RNN RNN

L

RNN RNN RNN RNN L

L(1)

L(2)

L(3)

L 1 L 2 L
3

L
4

padding

x
(1)

1

x
(2)

1

x(3)
1

y (1)

y (2)

y (3)

x (2)
2

x (1)

2

x (1)

3

x (1)

4

x
(3)

2

x
(3)

3

batches

Y Y Y Y

X 1 X2 X 3 X4

m 4m
3

m2m1

masks

Figure 1: Two computation graphs for computing the loss on a minibatch of three training instances
consisting of a sequence of input vectors paired with a fixed sized output vector. On the left is a
“conceptual” computation graph which shows the operations associated with computing the losses
individually for each sequence and then aggregating them. The same computation is executed by
the right-hand (“batched”) computation graph: it aggregates the inputs in order to make better
use of modern processors. This comes with a price in complexity—the variable length of the
sequences requires padding and masking operations. Our aim is for the user to specify the conceptual
computation on the left, and let the framework take care of its efficient execution.

that provides efficient implementations of higher-order generalizations of low-order operations makes
manual batching straightforward. For example, by adding a leading or trailing dimension to the
tensors representing inputs and outputs, multiple instances can be straightforwardly represented in a
single data structure. In other words: in this scenario, the developer conceives of and writes code for
the computation on an individual instance, packs several instances into a tensor as a “minibatch”, and
the library handles executing these efficiently in parallel.

Unfortunately, this idealized scenario breaks when working with more complex architectures. Deep
learning is increasingly being applied to problems whose inputs, outputs and intermediate representa-
tions do not fit easily into fixed sized tensors. For example, images vary in size and sequences in
length; data may be structured as trees [29] or graphs [4, 17, 27], or the model may select its own
computation conditional on the input [16, 28, 33]. In all these cases, while the desired computation
is easy enough to write for a single instance, organizing the computational operations so that they
make optimally efficient use of the hardware is nontrivial. Indeed, many papers that operate on data
structures more complicated than sequences have avoided batching entirely [8, 15, 25]. In fact, until
last year [7, 20], all published work on recursive (i.e., tree-structured) neural networks appears to
have used single instance training.

The premise of this work is that operation batching should not be the responsibility of the user,
but instead should be a service provided by the framework. The user should only be responsible
for specifying a large enough computation so that batching is possible (i.e, summing the losses of
several instances, such as one sees in the left side of Figure 1), and the framework should take care of
the lower-level details of operation batching, much like optimizing compilers or JIT optimizers in
interpreted languages do.3

We take a large step towards this goal by introducing an efficient algorithm—and a corresponding
implementation—for automatic batching in dynamically declared computation graphs.4 Our method
relies on separating the graph construction from its execution, using operator overloading and lazy

3 This is in contrast to other existing options for automatic batching such as TensorFlow Fold, which require
the user to learn an additional domain-specific language to turn computation into a format conducive to automatic
batching [19].

4Computation graphs (often represented in a form called a Wengert list) are the data structures used to structure
the evaluation of expressions and use reverse mode automatic differentiation to compute their derivatives [3].
Broadly, learning frameworks use two strategies to construct these: static and dynamic. In static toolkits (e.g.,
Theano [6], Tensorflow [1]) the computation graph is defined once and compiled, and then examples are fed into
the same graph. In contrast, dynamic toolkits (e.g., DyNet [21], Chainer [32], PyTorch [http://pytorch.org])
construct the computation graph for each training instance (or minibatch) as the forward computation is executed.
While dynamic declaration means that each minibatch can have its own computational architecture, the user is
still responsible for batching operations themselves.

2




















