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Abstract

Neuroscientists classify neurons into different types that perform similar compu-
tations at different locations in the visual field. Traditional methods for neural
system identification do not capitalize on this separation of “what” and “where”.
Learning deep convolutional feature spaces that are shared among many neurons
provides an exciting path forward, but the architectural design needs to account for
data limitations: While new experimental techniques enable recordings from thou-
sands of neurons, experimental time is limited so that one can sample only a small
fraction of each neuron’s response space. Here, we show that a major bottleneck
for fitting convolutional neural networks (CNNs) to neural data is the estimation
of the individual receptive field locations – a problem that has been scratched only
at the surface thus far. We propose a CNN architecture with a sparse readout layer
factorizing the spatial (where) and feature (what) dimensions. Our network scales
well to thousands of neurons and short recordings and can be trained end-to-end.
We evaluate this architecture on ground-truth data to explore the challenges and
limitations of CNN-based system identification. Moreover, we show that our net-
work model outperforms current state-of-the art system identification models of
mouse primary visual cortex.

1 Introduction

In neural system identification, we seek to construct quantitative models that describe how a neuron
responds to arbitrary stimuli [1, 2]. In sensory neuroscience, the standard way to approach this prob-
lem is with a generalized linear model (GLM): a linear filter followed by a point-wise nonlinearity
[3, 4]. However, neurons elicit complex nonlinear responses to natural stimuli even as early as in
the retina [5, 6] and the degree of nonlinearity increases as ones goes up the visual hierarchy. At the
same time, neurons in the same brain area tend to perform similar computations at different positions
in the visual field. This separability of what is computed from where it is computed is a key idea
underlying the notion of functional cell types tiling the visual field in a retinotopic fashion.

For early visual processing stages like the retina or primary visual cortex, several nonlinear methods
have been proposed, including energy models [7, 8], spike-triggered covariance methods [9, 10],
linear-nonlinear (LN-LN) cascades [11, 12], convolutional subunit models [13, 14] and GLMs based
on handcrafted nonlinear feature spaces [15]. While these models outperform the simple GLM, they
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still cannot fully account for the responses of even early visual processing stages (i.e. retina, V1), let
alone higher-level areas such as V4 or IT. The main problem is that the expressiveness of the model
(i.e. number of parameters) is limited by the amount of data that can be collected for each neuron.

The recent success of deep learning in computer vision and other fields has sparked interest in using
deep learning methods for understanding neural computations in the brain [16, 17, 18], including
promising first attempts to learn feature spaces for neural system identification [19, 20, 21, 22, 23].
In this study, we would like to achieve a better understanding of the possible advantages of deep
learning methods over classical tools for system identification by analyzing their effectiveness on
ground truth models. Classical approaches have traditionally been framed as individual multivari-
ate regression problems for each recorded neuron, without exploiting computational similarities
between different neurons for regularization. One of the most obvious similarities between different
neurons, however, is that the visual system simultaneously extracts similar features at many differ-
ent locations. Because of this spatial equivariance, the same nonlinear subspace is spanned at many
nearby locations and many neurons share similar nonlinear computations. Thus, we should be able
to learn much more complex nonlinear functions by combining data from many neurons and learning
a common feature space from which we can linearly predict the activity of each neuron.

We propose a convolutional neural network (CNN) architecture with a special readout layer that
separates the problem of learning a common feature space from estimating each neuron’s receptive
field location and cell type, but can still be trained end-to-end on experimental data. We evaluate
this model architecture using simple simulations and show its potential for developing a functional
characterization of cell types. Moreover, we show that our model outperforms the current state-of-
the-art on a publicly available dataset of mouse V1 responses to natural images [19].

2 Related work

Using artificial neural networks to predict neural responses has a long history [24, 25, 26]. Recently,
two studies [13, 14] fit two-layer models with a convolutional layer and a pooling layer. They
do find marked improvements over GLMs and spike-triggered covariance methods, but like most
other previous studies they fit their model only to individual cells’ responses and do not exploit
computational similarities among neurons.

Antolik et al. [19] proposed learning a common feature space to improve neural system identifica-
tion. They outperform GLM-based approaches by fitting a multi-layer neural network consisting of
parameterized difference-of-Gaussian filters in the first layer, followed by two fully-connected lay-
ers. However, because they do not use a convolutional architecture, features are shared only locally.
Thus, every hidden unit has to be learned ‘from scratch’ at each spatial location and the number of
parameters in the fully-connected layers grows quadratically with population size.

McIntosh et al. [20] fit a CNN to retinal data. The bottleneck in their approach is the final fully-
connected layer that maps the convolutional feature space to individual cells’ responses. The number
of parameters in this final readout layer grows very quickly and even for their small populations
represents more than half of the total number of parameters.

Batty et al. [21] also advocate feature sharing and explore using recurrent neural networks to model
the shared feature space. They use a two-step procedure, where they first estimate each neuron’s
location via spike-triggered average, then crop the stimulus accordingly for each neuron and then
learn a model with shared features. The performance of this approach depends critically on the
accuracy of the initial location estimate, which can be problematic for nonlinear neurons with a
weak spike-triggered average response (e. g. complex cells in primary visual cortex).

Our contribution is a novel network architecture consisting of a number of convolutional layers
followed by a sparse readout layer factorizing the spatial and feature dimensions. Our approach
has two main advantages over prior art. First, it reduces the effective number of parameters in
the readout layer substantially while still being trainable end-to-end. Second, our readout forces all
computations to be performed in the convolutional layers while the factorized readout layer provides
an estimate of the receptive field location and the cell type of each neuron.

In addition, our work goes beyond the findings of these previous studies by providing a systematic
evaluation, on ground truth models, of the advantages of feature sharing in neural system identifica-
tion – in particular in settings with many neurons and few observations.
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Figure 1: Feature sharing makes more efficient use of
the available data. Red line: System identification per-
formance with one recorded neuron. Blue lines: Per-
formance for a hypothetical population of 10 neurons
with identical receptive field shapes whose locations
we know. A shared model (solid blue) is equivalent to
having 10× as much data, i. e. the performance curve
shifts to the left. If we fit all neurons independently
(dashed blue), we do not benefit from their similarity.

3 Learning a common feature space

We illustrate why learning a common feature space makes much more efficient use of the available
data by considering a simple thought experiment. Suppose we record from ten neurons that all
compute exactly the same function, except that they are located at different positions. If we know
each neuron’s position, we can pool their data to estimate a single model by shifting the stimulus
such that it is centered on each neuron’s receptive field. In this case we have effectively ten times
as much data as in the single-neuron case (Fig. 1, red line) and we will achieve the same model
performance with a tenth of the data (Fig. 1, solid blue line). In contrast, if we treat each neuron as
an individual regression problem, the performance will on average be identical to the single-neuron
case (Fig. 1, dashed blue line). Although this insight has been well known from transfer learning in
machine learning, it has so far not been applied widely in a neuroscience context.

In practice we neither know the receptive field locations of all neurons a priori nor do all neurons
implement exactly the same nonlinear function. However, the improvements of learning a shared
feature space can still be substantial. First, estimating the receptive field location of an individual
neuron is a much simpler task than estimating its entire nonlinear function from scratch. Second,
we expect the functional response diversity within a cell type to be much smaller than the overall
response diversity across cell types [27, 28]. Third, cells in later processing stages (e. g. V1) share
the nonlinear computations of their upstream areas (retina, LGN), suggesting that equipping them
with a common feature space will simplify learning their individual characteristics [19].

4 Feature sharing in a simple linear ground-truth model

We start by investigating the possible advantages of learning a common feature space with a simple
ground truth model – a population of linear neurons with Poisson-like output noise:

rn = a
T
ns yn ∼ N

(

rn,
√

|rn|
)

(1)

Here, s is the (Gaussian white noise) stimulus, rn the firing rate of neuron n, an its receptive field
kernel and yn its noisy response. In this simple model, the classical GLM-based approch reduces to
(regularized) multivariate linear regression, which we compare to a convolutional neural network.

4.1 Convolutional neural network model

Our neural network consists of a convolutional layer and a readout layer (Fig. 2). The first layer
convolves the image with a number of kernels to produce K feature maps, followed by batch nor-
malization [29]. There is no nonlinearity in the network (i.e. activation function is the identity).
Batch normalization ensures that the output has fixed variance, which is important for the regulariza-
tion in the second layer. The readout layer pools the output, c, of the convolutional layer by applying
a sparse mask, q, for each neuron:

r̂n =
∑

i,j,k

cijkqijkn (2)

Here, r̂n is the predicted firing rate of neuron n. The mask q is factorized in the spatial and feature
dimension:

qijkn = mijnwkn, (3)

where m is a spatial mask and w is a set of K feature weights for each neuron. The spatial mask
and feature weights encode each neuron’s receptive field location and cell type, respectively. As we
expect them to be highly sparse, we regularize both by an L1 penalty (with strengths λm and λw).
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Figure 2: Our proposed CNN architecture in its simplest form. It consists of a feature space module
and a readout layer. The feature space is extracted via one or more convolutional layers (here one is
shown). The readout layer computes for each neuron a weighted sum over the entire feature space.
To keep the number of parameters tractable and facilitate interpretability, we factorize the readout
into a location mask and a vector of feature weights, which are both encouraged to be sparse by
regularizing with L1 penalty.

By factorizing the spatial and feature dimension in the readout layer, we achieve several useful
properties: first, it reduces the number of parameters substantially compared to a fully-connected
layer [20]; second, it limits the expressiveness of the layer, forcing the ‘computations’ down to
the convolutional layers, while the readout layer performs only the selection; third, this separation
of computation from selection facilitates the interpretation of the learned parameters in terms of
functional cell types.

We minimize the following penalized mean-squared error using the Adam optimizer [30]:

L =
1

B

∑

b,n

(ybn − r̂bn)
2 + λm

∑

i,j,n

|mijn|+ λw

∑

k,n

|wkn| (4)

where b denotes the sample index and B = 256 is the minibatch size. We use an initial learning
rate of 0.001 and early stopping based on a separate validation set consisting of 20% of the training
set. When the validation error has not improved for 300 consecutive steps, we go back to the best
parameter set and decrease the learning rate once by a factor of ten. After the second time we end
the training. We find the optimal regularization weights λm and λw via grid search.

To achieve optimal performance, we found it to be useful to initialize the masks well. Shifting the
convolution kernel by one pixel in one direction while shifting the mask in the opposite direction
in principle produces the same output. However, because in practice the filter size is finite, poorly
initialized masks can lead to suboptimal solutions with partially cropped filters (cf. Fig. 3C, CNN10).
To initialize the masks, we calculated the spike-triggered average for each neuron, smoothed it with
a large Gaussian kernel and took the pixel with the maximum absolute value as our initial guess for
the neurons’ location. We set this pixel to the standard deviation of the neuron’s response (because
the output of the convolutional layer has unit variance) and initialized the rest of the mask randomly
from a Gaussian N (0, 0.001). We initialized the convolution kernels randomly from N (0, 0.01) and
the feature weights from N (1/K, 0.01).

4.2 Baseline models

In the linear example studied here, the GLM reduces to simple linear regression. We used two forms
of regularization: lasso (L1) and ridge (L2). To maximize the performance of these baseline models,
we cropped the stimulus around each neuron’s receptive field. Thus, the number of parameters
these models have to learn is identical to those in the convolution kernel of the CNN. Again, we
cross-validated over the regularization strength.

4.3 Performance evaluation

To measure the models’ performance we compute the fraction of explainable variance explained:

FEV = 1−
〈

(r̂ − r)2
〉

/Var(r) (5)
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Figure 3: Feature sharing in homogeneous linear population. A, Population of homogeneous spa-
tially shifted on-center/off-surround neurons. B, Model comparison: Fraction of explainable vari-
ance explained vs. the number of samples used for fitting the models. Ordinary least squares (OLS),
L1 (Lasso) and L2 (Ridge) regularized regression models are fit to individual neurons. CNNN

are convolutional models with N neurons fit jointly. The dashed line shows the performance (for
N → ∞) of estimating the mask given the ground truth convolution kernel.C, Learned filters for
different methods and number of samples.

which is evaluated on the ground-truth firing rates r without observation noise. A perfect model
would achieve FEV = 1. We evaluate FEV on a held-out test set not seen during model fitting and
cross-validation.

4.4 Single cell type, homogeneous population

We first considered the idealized situation where all neurons share the same 17×17 px on-center/off-
surround filter, but at different locations (Fig. 3A). In other words, there is only one feature map in
the convolutional layer (K = 1). We used a 48 × 48 px Gaussian white noise stimulus and scaled
the neurons’ output such that 〈|r|〉 = 0.1, mimicking a neurally-plausible signal-to-noise ratio at
firing rates of 1 spike/s and an observation window of 100 ms. We simulated populations of N = 1,
10, 100 and 1000 neurons and varied the amount of training data.

The CNN model consistently outperformed the linear regression models (Fig. 3B). The ridge-
regularized linear regression explained around 60% of the explainable variance with 4,000 samples
(i. e. pairs of stimulus and N-dimensional neural response vector). A CNN model pooling over 10
neurons achieved the same level of performance with less than a quarter of the data. The margin in
performance increased with the number of neurons pooled over in the model, although the relative
improvement started to level off when going from 100 to 1,000 neurons.

With few observations, the bottleneck appears to be estimating each neuron’s location mask. Two
observations support this hypothesis. First, the CNN1000 model learned much ‘cleaner’ weights
with 256 samples than ridge regression with 4,096 (Fig. 3C), although the latter achieved a higher
predictive performance (FEV = 55% vs. 65%). This observation suggests that the feature space can
be learned efficiently with few samples and many neurons, but that the performance is limited by the
estimation of neurons’ location masks. Second, when using the ground-truth kernel and optimizing
solely the location masks, performance was only marginally better than for 1,000 neurons (Fig. 3B,
blue dotted line), indicating an upper performance bound by the problem of estimating the location
masks.

4.5 Functional classification of cell types

Our next step was to investigate whether our model architecture can learn interpretable features and
obtain a functional classification of cell types. Using the same simple linear model as above, we
simulated two cell types with different filter kernels. To make the simulation a bit more realistic, we
made the kernels heterogeneous within a cell type (Fig. 4A). We simulated a population of 1,000
neurons (500 of each type).

With sparsity on the readout weights every neuron has to select one of the two convolutional kernels.
As a consequence, the feature weights represent more or less directly the cell type identity of each
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Figure 4: A, Example receptive fields of two types of neurons, differing in their average size. B,
Learned filters of the CNN model. C, Scatter plot of the feature weights for the two cell types.

neuron (Fig. 4C). This in turn forces the kernels to learn the average of each type (Fig. 4B). However,
any other set of kernels spanning the same subspace would have achieved the same predictive per-
formance. Thus, we find that sparsity on the feature weights facilitates interpretability: each neuron
chooses one feature channel which represents the essential computation of this type of neuron.

5 Learning nonlinear feature spaces

5.1 Ground truth model

Next, we investigated how our approach scales to more complex, nonlinear neurons and natural
stimuli. To keep the benefits of having ground truth data available, we chose our model neurons from
the VGG-19 network [31], a popular CNN trained on large-scale object recognition. We selected
four random feature maps from layer conv2_2 as ‘cell types’. For each cell type, we picked 250
units with random locations (32 × 32 possible locations). We computed ground-truth responses
for all 1000 cells on 44 × 44 px image patches obtained by randomly cropping images from the
ImageNet (ILSVRC2012) dataset. As before, we rescaled the output to produce sparse, neurally
plausible mean responses of 0.1 and added Poisson-like noise.

We fit a CNN with three convolutional layers consisting of 32, 64 and 4 feature maps (kernel size
5 × 5), followed by our sparse, factorized readout layer (Fig. 5A). Each convolutional layer was
followed by batch normalization and a ReLU nonlinearity. We trained the model using Adam with
a batch-size of 64 and the same initial step size, early stopping, cross-validation and initialization of
the masks as described above. As a baseline, we fit a ridge-regularized GLM with ReLU nonlinearity
followed by an additional bias.

To show that our sparse, factorized readout layer is an important feature of our architecture, we also
implemented two alternative ways of choosing the readout, which have been proposed in previous
work on learning common feature spaces for neural populations. The first approach is to estimate
the receptive field location in advance based on the spike-triggered average of each neuron [21].1

To do so, we determined the pixel with the strongest spike-triggered average. We then set this
pixel to one in the location mask and all other pixels to zero. We then kept the location mask
fixed while optimizing convolution kernels and feature weights. The second approach is to use a
fully-connected readout tensor [20] and regularize the activations of all neurons with L1 penalty.
In addition, we regularized the fully-connected readout tensor with L2 weight decay. We fit both
models to populations of 1,000 neurons.

Our CNN with the factorized readout outperformed all three baselines (Fig. 5B).2 The performance
of the GLM saturated at ≈20% FEV (Fig. 5B), highlighting the high degree of nonlinearity of our
model neurons. Using a fully-connected readout [20] incurred a substantial performance penalty
when the number of samples was small and only asymptotically (for a large number of samples)
reached the same performance as our factorized readout. Estimating the receptive field location in

1Note that they used a recurrent neural network for the shared feature space. Here we only reproduce their
approach to defining the readout.

2It did not reach 100% performance, since the feature space we fit was smaller and the network shallower
than the one used to generate the ground truth data.
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Figure 5: Inferring a complex, nonlinear feature space. A, Model architecture. B, Dependence
of model performance (FEV) on number of samples used for training. C, Feature weights of the
four cell types for CNN1000 with 215 samples cluster strongly. D, Learned location masks for four
randomly chosen cells (one per type). E, Dependence of model performance (FEV) on number of
types of neurons in population, number of samples fixed to 212.

advance [21] led to a drop in performance – even for large sample sizes. A likely explanation for
this finding is the fact that the responses are quite nonlinear and, thus, estimates of the receptive field
location via spike-triggered average (a linear method) are not very reliable, even for large sample
sizes.

Note that the fact that we can fit the model is not trivial, although ground truth is a CNN. We have
observations of noise-perturbed VGG units whose locations we do not know. Thus, we have to infer
both the location of each unit as well as the complex, nonlinear feature space simultaneously. Our
results show that our model solves this task more efficiently than both simpler (GLM) and equally
expressive [20] models when the number of samples is relatively small.

In addition to fitting the data well, the model also recovered both the cell types and the receptive
field locations correctly (Fig. 5C, D). When fit using 216 samples (210 for validation/test and the rest
for training), the readout weights of the four cell types clustered nicely (Fig. 5C) and it successfully
recovered the location masks (Fig. 5D). In fact, all cells were classified correctly based on their
largest feature weight.

Next, we investigated how our model and its competitors [20, 21] fare when scaling up to large
recordings with many types of neurons. To simulate this scenario, we sampled again VGG units
(from the same layer as above), taking 64 units with random locations from up to 16 different
feature maps (i.e. cell types). Correspondingly we increased the number of feature maps in the last
convolutional layer of the models. We fixed the number of training samples to 212 to compare models
in a challenging regime (cf. Fig. 5B) where performance can be high but is not yet asymptotic.

Our CNN model scales gracefully to more diverse neural populations (Fig. 5E), remaining roughly
at the same level of performance. Similarly, the CNN with the fixed location masks estimated in
advance scales well, although with lower overall performance. In contrast, the performance of the
fully-connected readout drops fast, because the number of parameters in the readout layer grows
very quickly with the number of feature maps in the final convolutional layer. In fact, we were
unable to fit models with more than 16 feature maps with this approach, because the size of the
read-out tensor became prohibitively large for GPU memory.

7



Table 1: Application to data from primary visual cortex (V1) of mice [19]. The table shows average
correlations between model predictions and neural responses on the test set.

Scan 1 2 3 Average

Antolik et al. 2016 [19] 0.51 0.43 0.46 0.47
LNP 0.37 0.30 0.38 0.36
CNN with fully connected readout 0.47 0.34 0.43 0.43
CNN with fixed mask 0.45 0.38 0.41 0.42

CNN with factorized readout (ours) 0.55 0.45 0.49 0.50

Finally, we asked how far we can push our model with long recordings and many neurons. We tested
our model with 216 training samples from 128 different types of neurons (again 64 units each). On
this large dataset with ≈ 60.000 recordings from ≈ 8.000 neurons we were still able to fit the model
on a single GPU and perform at 90% FEV (data not shown). Thus, we conclude that our model
scales well to large-scale problems with thousands of nonlinear and diverse neurons.

5.2 Application to data from primary visual cortex

To test our approach on real data and going beyond the previously explored retinal data [20, 21],
we used the publicly available dataset from Antolik et al. [19].3 The dataset has been obtained by
two-photon imaging in the primary visual cortex of sedated mice viewing natural images. It contains
three scans with 103, 55 and 102 neurons, respectively, and their responses to static natural images.
Each scan consists of a training set of images that were each presented once (1800, 1260 and 1800
images, respectively) as well as a test set consisting of 50 images (each image repeated 10, 8 and 12
times, respectively). We use the data in the same form as the original study [19], to which we refer
the reader for full details on data acquisition, post-processing and the visual stimulation paradigm.

To fit this dataset, we used the same basic CNN architecture described above, with three small
modifications. First, we replaced the ReLU activation functions by a soft-thresholding nonlinearity,
f(x) = log(1 + exp(x)). Second, we replaced the mean-squared error loss by a Poisson loss
(because neural responses are non-negative and the observation noise scales with the mean response).
Third, we had to regularize the convolutional kernels, because the dataset is relatively limited in
terms of recording length and number of neurons. We used two forms of regularization: smoothness
and group sparsity. Smoothness is achieved by an L2 penalty on the Laplacian of the convolution
kernels:

Llaplace = λlaplace

∑

i,j,k,l

(W:,:,kl ∗ L)
2
ij , L =

[

0.5 1 0.5
1 −6 1

0.5 1 0.5

]

(6)

where Wijkl is the 4D tensor representing the convolution kernels, i and j depict the two spatial
dimensions of the filters and k, l the input and output channels. Group sparsity encourages filters to
pool from only a small set of feature maps in the previous layer and is defined as:

Lgroup = λgroup

∑

i,j

√

∑

kl

W 2
ijkl . (7)

We fit CNNs with one, two and three layers. After an initial exploration of different CNN architec-
tures (filter sizes, number of feature maps) on the first scan, we systematically cross-validated over
different filter sizes, number of feature maps and regularization strengths via grid search on all three
scans. We fit all models using 80% of the training dataset for training and the remaining 20% for
validation using Adam and early stopping as described above. For each scan, we selected the best
model based on the likelihood on the validation set. In all three scans, the best model had 48 feature
maps per layer and 13 × 13 px kernels in the first layer. The best model for the first two scans had
3× 3 kernels in the subsequent layers, while for the third scan larger 8× 8 kernels performed best.

We compared our model to four baselines: (a) the Hierarchical Structural Model from the original
paper publishing the dataset [19], (b) a regularized linear-nonlinear Poisson (LNP) model, (c) a
CNN with fully-connected readout (as in [20]) and (d) a CNN with fixed spatial masks, inferred

3See [22, 23] for concurrent work on primate V1.
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from the spike-triggered averages of each neuron (as in [21]). We used a separate, held-out test set
to compare the performance of the models. On the test set, we computed the correlation coefficient
between the response predicted by each model and the average observed response across repeats of
the same image.4

Our CNN with factorized readout outperformed all four baselines on all three scans (Table 1). The
other two CNNs, which either did not use a factorized readout (as in [20]) or did not jointly optimize
feature space and readout (as in [21]), performed substantially worse. Interestingly, they did not
even reach the performance of [19], which uses a three-layer fully-connected neural network instead
of a CNN. Thus, our model is the new state of the art for predicting neural responses in mouse
V1 and the factorized readout was necessary to outperform an earlier (and simpler) neural network
architecture that also learned a shared feature space for all neurons [19].

6 Discussion

Our results show that the benefits of learning a shared convolutional feature space can be substantial.
Predictive performance increases, however, only until an upper bound imposed by the difficulty of
estimating each neuron’s location in the visual field. We propose a CNN architecture with a sparse,
factorized readout layer that separates these two problems effectively. It allows scaling up the com-
plexity of the convolutional layers to many parallel channels (which are needed to describe diverse,
nonlinear neural populations), while keeping the inference problem of each neuron’s receptive field
location and type identity tractable.

Furthermore, our performance curves (see Figs. 3 and 5) may inform experimental designs by deter-
mining whether one should aim for longer recordings or more neurons. For instance, if we want to
explain at least 80% of the variance in a very homogenous population of neurons, we could choose
to record either ≈ 2,000 responses from 10 cells or ≈ 500 responses from 1,000 cells.

Besides making more efficient use of the data to infer their nonlinear computations, the main promise
of our new regularization scheme for system identification with CNNs is that the explicit separation
of “what” and “where” provides us with a principled way to functionally classify cells into different
types: the feature weights of our model can be thought of as a “barcode” identifying each cell type.
We are currently working on applying this approach to large-scale data from the retina and primary
visual cortex. Later processing stages, such as primary visual cortex could additionally benefit from
similarly exploiting equivariance not only in the spatial domain, but also (approximately) in the
orientation or direction-of-motion domain.

Availability of code

The code to fit the models and reproduce the figures is available online at:
https://github.com/david-klindt/NIPS2017
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4We used the correlation coefficient for evaluation (a) to facilitate comparison with the original study [19]
and (b) because estimating FEV on data with a small number of repetitions per image is unreliable.
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