
Spherical convolutions and their application in
molecular modelling

Wouter Boomsma
Department of Computer Science

University of Copenhagen
wb@di.ku.dk

Jes Frellsen
Department of Computer Science

IT University of Copenhagen
jefr@itu.dk

Abstract

Convolutional neural networks are increasingly used outside the domain of image
analysis, in particular in various areas of the natural sciences concerned with
spatial data. Such networks often work out-of-the box, and in some cases entire
model architectures from image analysis can be carried over to other problem
domains almost unaltered. Unfortunately, this convenience does not trivially
extend to data in non-euclidean spaces, such as spherical data. In this paper, we
introduce two strategies for conducting convolutions on the sphere, using either
a spherical-polar grid or a grid based on the cubed-sphere representation. We
investigate the challenges that arise in this setting, and extend our discussion to
include scenarios of spherical volumes, with several strategies for parameterizing
the radial dimension. As a proof of concept, we conclude with an assessment of the
performance of spherical convolutions in the context of molecular modelling, by
considering structural environments within proteins. We show that the models are
capable of learning non-trivial functions in these molecular environments, and that
our spherical convolutions generally outperform standard 3D convolutions in this
setting. In particular, despite the lack of any domain specific feature-engineering,
we demonstrate performance comparable to state-of-the-art methods in the field,
which build on decades of domain-specific knowledge.

1 Introduction

Given the transformational role that convolutional neural networks (CNNs) have had in the area of
image analysis, it is natural to consider whether such networks can be efficiently applied in other
contexts. In particular spatially embedded data can often be interpreted as images, allowing for
direct transfer of neural network architectures to these domains. Recent years have demonstrated
interesting examples in a broad selection of the natural sciences, ranging from physics (Aurisano
et al., 2016; Mills et al., 2017) to biology (Wang et al., 2016; Min et al., 2017), in many cases showing
convolutional neural networks to substantially outperform existing methods.

The standard convolutional neural network can be applied naturally to data embedded in a Euclidean
space, where uniformly spaced grids can be trivially defined. For other manifolds, such as the sphere,
it is less obvious, and to our knowledge, convolutional neural networks for such manifolds have not
been systematically investigated. In particular for the sphere, the topic has direct applications in a
range of scientific disciplines, such as the earth sciences, astronomy, and modelling of molecular
structure.

This paper presents two strategies for creating spherical convolutions, as understood in the context
of convolutional neural networks (i.e., discrete, and efficiently implementable as tensor operations).
The first is a straightforward periodically wrapped convolution on a spherical-polar grid. The second
builds on the concept of a cubed-sphere (Ronchi et al., 1996). We proceed with extending these

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



strategies to include the radial component, using concentric grids, which allows us to conduct
convolutions in spherical volumes.

Our hypothesis is that these concentric spherical convolutions should outperform standard 3D
convolutions in cases where data is naturally parameterized in terms of a radial component. We test
this hypothesis in the context of molecular modelling. We will consider structural environments in a
molecule as being defined from the viewpoint of a single amino acid or nucleotide: how does such an
entity experience its environment in terms of the mass and charge of surrounding atoms? We show
that a standard convolutional neural network architectures can be used to learn various features of
molecular structure, and that our spherical convolutions indeed outperform standard 3D convolutions
for this purpose. We conclude by demonstrating state-of-the art performance in predicting mutation
induced changes in protein stability.

2 Spherical convolutions

Conventional CNNs work on discretized input data on a grid in Rn, such as time series data in R
and image data in R2. At each convolutional layer l a CNN performs discrete convolutions (or a
correlation)

[f ∗ ki](x) =
∑

x′∈Zn

Cl∑
c=1

fc(x
′)kic(x− x′) (1)

of the input feature map f : Zn → RCl and a set of Cl+1 filters ki : Zn → RCl (Cohen and Welling,
2016; Goodfellow et al., 2016). While such convolutions are equivariant to translation on the grid,
they are not equivariant to scaling (Cohen and Welling, 2016). This means that in order to preserve
the translation equivariance in Rn, conventional CNNs rely on the grid being uniformly spaced within
each dimension of Rn. Constructing such a grid is straightforward in Rn. However, for convolutions
on other manifolds such as the 2D sphere, S2 = {v ∈ R3|vvᵀ = 1}, no such planar uniform grid is
available, due to the non-linearity of the space (Mardia and Jupp, 2009). In this section, we briefly
discuss the consequences of using convolutions in the standard non-uniform spherical-polar grid, and
present an alternative grid for which the non-uniformity is expected to be less severe.

2.1 Convolutions of features on S2

A natural approach to a discretization on the sphere is to represent points v on the sphere by their
spherical-polar coordinates (θ, φ) and construct uniformly spaced grid in these coordinates, where
the spherical coordinates are defined by v = (cos θ, sin θ cosφ, sin θ sinφ)ᵀ. Convolutions on such
a grid can be implemented efficiently using standard 2D convolutions when taking care of using
periodic padding at the φ boundaries. The problem with a spherical-polar coordinate grid is that it is
highly non-equidistant when projected onto the sphere: the distance between grid points becomes
increasingly small as we move from the equator to the poles (figure 1, left). This reduces the ability
to share filters between different areas of the sphere.

Figure 1: Two realizations of a grid on the sphere. Left: a grid using equiangular spacing in a
standard spherical-polar coordinate system, and Right: An equiangular cubed-sphere representation,
as described in Ronchi et al. (1996).

2



Figure 2: Left: A cubed-sphere grid and a curve on the sphere. Right: The six planes of a cubed-sphere
representation and the transformation of the curve to this representation.

As a potential improvement, we will investigate a spherical convolution based on the cubed-sphere
transformation (Ronchi et al., 1996). The transformation is constructed by decomposing the sphere
into six patches defined by projecting the circumscribed cube onto the sphere (figure 1, right). In
this transformation a point on the sphere v ∈ S2 is mapped to a patch b ∈ {1, 2, 3, 4, 5, 6} and two
coordinates (ξ, η) ∈ [−π/4, π/4[2 on that patch. The coordinate are given by the angles between the
axis pointing to the patch and v measured in the two coordinate planes perpendicular to the patch. For
instance the vectors {v ∈ S2|vx > vy and vx > vz} map to patch b = 1 and we have tan ξ = vy/vx
and tan η = vz/vx. The remaining mappings are described by Ronchi et al. (1996).

If we grid the two angles (ξ, η) uniformly in the cubed-sphere transformation and project this grid
onto the sphere, we obtain a grid that is more regular (Ronchi et al., 1996), although it has artefacts
in the 8 corners of the circumscribed cube (figure 1, right). The cubed-sphere convolution is then
constructed by applying the conventional convolution in equation (1) to a uniformly spaced grid on
each of the six cubed shape patches. This construction has two main advances: 1) within each patch,
the convolution is almost equivariant to translation in ξ and η and 2) features on the cubed-sphere
grid can naturally be expressed using tensors, which means that the spherical convolution can be
efficiently implemented on a GPU. When implementing convolutions and pooling operations for
the cubed-sphere grid, one has to be careful in padding each patch with the contents of the four
neighbouring patches, in order to preserve the wrapped topology of the sphere (figure 2, right).

Both of these two approaches to spherical convolutions are hampered by a lack of rotational equivari-
ance, which restricts the degree with which filters can be shared over the surface of the sphere, leading
to suboptimal efficiency in the learning of the parameters. Despite this limitation, for capturing
patterns in spherical volumes, we expect that the ability to express patterns naturally in terms of radial
and angular dimensions has advantages over standard 3D convolutions. We test this hypothesis in the
following sections.

2.2 Convolutions of features on B3

The two representations from figure 1 generalize to the ball B3 by considering concentric shells at
uniformly separated radii. In the case of the cubed-sphere, this means that a vector v ∈ B3 is mapped
to the unique coordinates (r, b, ξ, η), where r =

√
vvᵀ is the radius and (b, ξ, η) are the cubed-sphere

coordinates at r, and we construct a uniform grid in r, ξ and η. Likewise, in the spherical-polar case,
we construct a uniform grid in r, θ and φ. We will refer to these grids as concentric cubed-sphere grid
and concentric spherical-polar grid respectively (figure 3). As is the case for their S2 counterparts,
features on these grids can be naturally expressed using tensors.

We can apply the conventional 3D convolutions in equation (1) to features on the concentric cubed-
sphere and the concentric spherical-polar grids, and denote these as concentric cubed-sphere convolu-
tion (CCSconv) and concentric spherical-polar convolution (CSPconv). For fixed r, the convolutions
will thus have the same properties as in the S2 case. In these concentric variants, the convolutions
will not be equivariant to translations in r, which again reduces the potential to share filter parameters.

3



Figure 3: Three realizations of a grid on the ball. Left: a grid using equiangular spacing in a
standard spherical-polar coordinate system (concentric spherical-polar grid). Center: An equiangular
cubed-sphere representation, as described in Ronchi et al. (1996) (concentric cubed-sphere grid).
Right: a Cartesian grid.

We propose to address this issue in three ways. First, we can simply apply the convolution over
the full range of r with a large number of filters Cl+1 and hope that the network will automatically
allocate different filters at different radii. Secondly, we can make the filters ki(x− x′, xr) depend
on r, which corresponds to using different (possibly overlapping) filters on each spherical shell
(conv-banded-disjoint). Thirdly, we can divide the r-grid into segments and apply the same filter
within each segment (conv-banded), potentially with overlapping regions (depending on the stride).
The three approaches are illustrated in figure 4.

In the experiments below, we will be comparing the performance of our concentric spherical convolu-
tion methods to that of a simple 3D convolution in a Cartesian grid (figure 3, right).

(a) conv (b) conv-banded-disjoint (convbd) (c) conv-banded
(convb)

Figure 4: Three strategies for the radial component of concentric cubed-sphere or concentric spherical
convolutions. (a) conv: The same convolution-filter is applied to all values of r, (b) conv-banded-
disjoint (convbd): convolution-filters are only applied in the angular directions, using different filters
for each block in r, (c) conv-banded (convb): convolutions are applied within radial segments, Note
that for visual clarity, we use a stride of 3 in this figure, although we use a stride of 1 in practice.

3 Modelling structural environments in molecules

In the last decades, substantial progress has been made in the ability to simulate and analyse molecular
structures on a computer. Much of this progress can be ascribed to the molecular force fields used to
capture the physical interactions between atoms. The basic functional forms of these models were
established in the late 1960s, and through gradual refinements they have become a success story of
molecular modelling. Despite these positive developments, the accuracy of molecular force fields is
known to still be a limiting factor for many biological and pharmaceutical applications, and further im-
provements are necessary in this area to increase the robustness of methods for e.g. protein prediction
and design. There are indications that Machine Learning could provide solutions to such challenges.
While, traditionally, most of the attention in the Machine Learning community has been dedicated

4



Figure 5: Example of the environment surrounding an amino acid in a protein, in this case the
phenylalanine at position 30 in protein GB1 (PDB ID: 2GB1). Left: a cartoon representation of GB1,
where the helix is red, the sheets are yellow and the coils are grey. The phenylalanine is shown using
an atomic representation in green. Right: an atomic representation of GB1, where carbon atoms are
green, oxygen atoms are red, nitrogen atoms are blue and hydrogen atoms are grey. A sphere centered
at the Cα atom of the phenylalanine with a radius of 12Å is shown in grey.

to predicting structural features from amino acid sequences (e.g. secondary structure, disorder, and
contact prediction), there are increasingly applications taking three dimensional molecular structure
as input (Behler and Parrinello, 2007; Jasrasaria et al., 2016; Schütt et al., 2017; Smith et al., 2017).
In particular in the field of quantum chemistry, a number of studies have demonstrated the ability
of deep learning techniques to accurately predict energies of molecular systems. Common to many
of these methods is a focus on manually engineered features, where the molecular input structure is
encoded based on prior domain-specific knowledge, such as specific functional relationships between
atoms and their environments (Behler and Parrinello, 2007; Smith et al., 2017). Recently, a few
studies have demonstrated the potential of automatically learning such features, by encoding the
molecular structural input in a more domain-agnostic manner, for instance considering only pairwise
distance matrices (Schütt et al., 2017), space filling curves (Jasrasaria et al., 2016), or basic structural
features (Wallach et al., 2015).

The fact that atomic forces are predominantly distance-based suggests that molecular environments
are most naturally represented with a radial-based parameterization, which makes it an obvious
test case for the convolutions presented in the previous section. If successful, such convolutions
could allow us to make inferences directly from the raw molecular structure of a molecule, avoiding
the need of manual feature engineering. We will consider the environments that each amino acids
experience within its globular protein structure as images in the 3-ball. Figure 5 shows an example
of the environment experienced by an arbitrarily chosen amino acid in the GB1 protein (PDB
ID: 2GB1). Although distorted by the fish-eye perspective, the local environment (right) displays
several key features of the data: we see clear patterns among neighboring atoms, depending on their
local structure, and we can imagine the model learning to recognize hydrogen bonds and charge
interactions between an amino acid and its surroundings.

Our representation of the molecular environment includes all atoms within a 12 Å radius of the Cα
atom of the amino acid in question. Each atom is represented by three fundamental properties: 1) its
position relative to the amino acid in question (i.e., the position in the grid), 2) its mass, and 3) its
partial charge, as defined by the amber99sb force field (Hornak et al., 2006). We construct two types
of models, which are identical except for their output. The first outputs the propensity for different
secondary structure labels at a given position (i.e., helix, extended, coil), while the second outputs the
propensity for different amino acid types. Each of these models will be implemented with both the
Cartesian, the concentric spherical and the concentric cubed-sphere convolutions. Furthermore, for
the concentric cubed-sphere convolutions, we compare the three strategies for dealing with the radial
component illustrated in figure 4.

5



Table 1: The architecture of the CNN where o represent the output size, which is 3 for secondary
structure output and 20 for amino acid output. As an example, we use the convolutional filter sizes
from the concentric cubed-sphere (CCS) case. Similar sizes are used for the other representations.

Layer Operation Filter / weight size Layer output size
0 Input 6× 24× 38× 38× 2

1 CCSconv + ReLU 3× 5× 5× 2× 16 6× 22× 19× 19× 16
1 CCSsumpool 1× 3× 3 6× 22× 10× 10× 16

2 CCSconv + ReLU 3× 3× 3× 16× 32 6× 20× 10× 10× 32
2 CCSsumpool 3× 3× 3 6× 9× 5× 5× 32

3 CCSconv + ReLU 3× 3× 3× 32× 64 6× 7× 5× 5× 64
3 CCSsumpool 1× 3× 3 6× 7× 3× 3× 64

4 CCSconv + ReLU 3× 3× 3× 64× 128 6× 5× 3× 3× 128
4 CCSsumpool 1× 3× 3 6× 5× 3× 3× 128

5 Dense + ReLU 34 560× 2 048 2 048

6 Dense + ReLU 2 048× 2 048 2 048

7 Dense + Softmax 2 048× o o

3.1 Model architecture

The input to the network is a grid (concentric cubed-sphere, concentric spherical polar or Cartesian).
Each voxel has two input channels: the mass of the atom that lies in the given bin and the atom’s partial
charge (or zeros if no atom is found). The resolution of the grids are chosen so that the maximum
distance within a bin is 0.5Å, which ensures that bins are occupied by at most one atom. The radius of
the ball is set to 12Å, since most physical interactions between atoms occur within this distance (Irbäck
and Mohanty, 2006). This gives us an input tensor of shape (b = 6, r = 24, ξ = 38, η = 38, C1 = 2)
for the concentric cubed-sphere case, (r = 24, θ = 76, φ = 151, C1 = 2) for the concentric spherical
polar case, and (x = 60, y = 60, z = 60, C1 = 2) for the Cartesian case.

We use a deep model architecture that is loosely inspired by the VGG models (Simonyan and
Zisserman, 2015), but employs the convolution operators described above. Our models have four
convolutional layers followed by three dense layers, as illustrated in table 1. Each convolutional layer
is followed by rectified linear unit (ReLU) activation function (Hahnloser et al., 2000; Glorot et al.,
2011) and a sum pooling operation which is appropriately wrapped in the case of the concentric
cubed-sphere and the concentric spherical polar grid. We use sum pooling since the input features,
mass and partial charge, are both physical quantities that are naturally additive. The total number
of parameters is the models (with the amino acid output) are 75 313 253 (concentric cubed-sphere),
69 996 645 (concentric spherical polar), and 61 159 077 (Cartesian). Furthermore, for the concentric
cubed-sphere case, we include a comparison of the two alternative strategies for the radial component:
the convb and the convbd, which have 75 745 333 and 76 844 661 parameters respectively. Finally, to
see the effect of convolutions over a purely dense model, we include a baseline model where the
convolutional layers are replaced with dense layers, but otherwise following the same architecture,
and roughly the same number of parameters (66 670 613).

3.2 Training

We minimized the cross-entropy loss using Adam (Kingma and Ba, 2015), regularized by penalizing
the loss with the sum of the L2 of all weights, using a multiplicative factor of 0.001. All dense layers
also used dropout regularization with a probability of 0.5 of keeping a neuron. The models were
trained on NVIDIA Titan X (Pascal) GPUs, using a batch size of 100 and a learning rate of 0.0001.

The models were trained on data set of high resolution crystal structures. A large initial (non-
homology-reduced) data set was constructed using the PISCES server (Wang and Dunbrack, 2003).
For all structures, hydrogen atoms were added using the Reduce program (Word et al., 1999), after
which partial charges were assigned using the OpenMM framework (Eastman et al., 2012), using
the amber99sb force field (Hornak et al., 2006). During these stages strict filters were applied to
remove structures that 1) were incomplete (missing chains or missing residues compared to the seqres

6



entry), 2) had chain breaks, 3) failed to parse in OpenMM, or 4) led the Reduce program to crash.
Finally, the remaining set was resubmitted to the PISCES server, where homology-reduction was
done at the 30% level. This left us with 2336 proteins, out of which 1742 were used for training, 10
for validation, and the remainder was set aside for testing. The homology-reduction ensures that any
pair of sequences in the data set are at most 30% identical at the amino-acid-level, which allows us to
safely split the data into non-overlapping sets.

4 Results

We now discuss results obtained with the secondary structure and amino acid models, respectively.
Despite the apparent similarity of the two models, the two tasks have substantially different biological
implications: secondary structure is related to the 3D structure locally at a given position in a
protein, i.e. whether the protein assumes a helical or a more extended shape. In contrast, amino acid
propensities describe allowed mutations in a protein, which is related to the fundamental biochemistry
of the molecule, and is relevant for understanding genetic disease and for design of new proteins.

4.1 Learning the DSSP secondary structure function

Predicting the secondary structure of a protein conditioned on knowledge of the three dimensional
structure is not considered a hard problem. We include it here because we are interested in the ability of
the neural network to learn the function that is typically used to annotate three dimensional structures
with secondary structure, in our case DSSP (Kabsch and Sander, 1983). Interestingly, the different
concentric convolutional models are seen to perform about equally well on this problem (table 2, Q3),
marginally outperforming the Cartesian convolution and substantially outperforming the dense
baseline model.

To get a sense of the absolute performance, we would ideally compare to existing methods on the
same problem. However, rediscovering the DSSP function is not a common task in bioinformatics,
and not many tools are available that would constitute a meaningful comparison, in particular because
secondary structure annotation algorithms use different definitions of secondary structure. We here
use the TORUSDBN model (Boomsma et al., 2008, 2014) to provide such a baseline. The model is
sequential in the sequence of a protein, and thus captures local structural information only. While
the model is originally designed to sample backbone dihedral angles conditioned on an amino acid
sequence or secondary structure sequence, it is generative, and can thus be used in reverse and provide
the most probable secondary structure or amino acid sequence given using viterbi decoding. Most
importantly, it is trained on DSSP, making it useful as a comparison for this study. Included as the last
row in table 2, TORUSDBN demonstrates slightly lower performance compared to our convolutional
approaches, illustrating that most of the secondary structure signal is encoded in the local angular
preferences. It is encouraging to see that the convolutional networks capture all these local signals,
but obtain additional performance through more non-local interactions.

4.1.1 Learning amino acid propensities

Compared to secondary structure, predicting the amino acid propensity is substantially harder—partly
because of the larger sample space, but also because we expect such preferences to be defined by
more global interaction patterns. Interestingly, the two concentric convolutions perform about equally
well, suggesting that the added regularity of the cubed-sphere representation does not provide a
substantial benefit for this case (table 2, Q20). However, both methods substantially outperform the
standard 3D convolution, which again outperforms the dense baseline model. We also note that there
is now a significant difference between the three radial strategies, with conv-banded-disjoint (bd)
and conv-banded (b) both performing worse than the simpler case of using a single convolution over
the entire r-range. Again, we include TorusDBN as an external reference. The substantially lower
performance of this model confirms that the amino acid label prediction task depends predominantly
on non-local features not captured by this model. Finally, we include another baseline: the most
frequent amino acid observed at this position among homologous (evolutionarily related) proteins. It
is remarkable that the concentric models (which are trained on a homology-reduced protein set), are
capable of learning the structural preferences of amino acids to the same extent as the information
that is encoded as genetic variation in the sequence databases. This strongly suggests the ability of
our models to learn general relationships between structure and sequence.

7



Table 2: Performance of various models in the prediction of (a) DSSP-style secondary structure
conditioned and (b) amino acid propensity conditioned on the structure. The Q3 score is defined as
the percentage of correct predictions for the three possible labels: helix, extended and coil. The Q20
score is defined as the percentage of correct predictions for the 20 possible amino acid labels.

Model Q3 (secondary structure) Q20 (amino acid)

CCSconv 0.933 0.564
CCSconvbd 0.931 0.515
CCSconvb 0.932 0.548
CSPconv 0.932 0.560
Cartesian 0.922 0.500
CCSdense 0.888 0.348
PSSM - 0.547
TORUSDBN 0.894 0.183

4.1.2 Predicting change-of-stability

The models in the previous section not only predict the most likely amino acid, but also the entire
distribution. A natural question is whether the ratio of probabilities of two amino acids according
to this distribution is related to the change of stability induced by the corresponding mutation. We
briefly explore this question here.

The stability of a protein is the difference in free energy ∆G between the folded and unfolded
conformation of a protein. The change in stability that occurs as a consequence of a mutation is
thus frequently referred to as ∆∆G. These values can be measured experimentally, and several data
sets with these values are publicly available. As a simple approximation, we can interpret the sum
of negative log-probabilities of each amino acid along the sequence as a free energy of the folded
state Gf . To account for the free energy of the unfolded state, Gu, we could consider the negative
log-probability that the amino acid in question occurs in the given amino acid sequence (without
conditioning on the environment). Again, assuming independence between sites in the chain, this
could be modelled by simply calculating the log-frequencies of the different amino acids across the
data set, and summing over all sites of the specific protein to get the total free energy. Subtracting
these two pairs of values for the wild type (W) and mutant (M) would give us a rough estimate of the
∆∆G, which due to our assumption of independence between sites simplifies to just the difference in
values at the given site:

∆∆G(W̄ , M̄) = (Gf (Mn)−Gu(Mn))− (Gf (Wn)−Gu(Wn)), (2)

where W̄ and M̄ denote the full wild type and mutant sequence respectively, and Wn and Mn denote
the amino acids of wild type and mutant at the site n at which they differ. Given the extensive set
of simplifying assumptions in the argument above, we do not use the expression in equation (2)
directly but rather use the four log-probabilities (Gf (Mn), Gu(Mn), Gf (Wn), Gu(Wn)) as input to
a simple regression model (a single hidden layer neural network with 10 hidden nodes and a ReLU
activation function), trained on experimentally observed ∆∆G data. We calculate the performance
on several standard experimental data sets on mutation-induced change-of-stability, in each case
using 5-fold cross validation, and reporting the correlation between experimentally measured and our
calculated ∆∆G. As a baseline, we compare our performance to two of the best known programs for
calculating ∆∆G: Rosetta and FoldX. The former were taken from a recent publication (Conchúir
et al., 2015), while the latter were calculated using the FoldX program (version 4). The comparison
shows that even a very simple approach based on our convolutional models produces results that are
comparable to the state-of-the-art in the field (table 3). This is despite the fact that we use a rather
crude approximation of free energy, and that our approach disregards the fact that a mutation at a
given site modifies the environment grids of all amino acids within the 12 Å range. Although these
initial results should therefore not be considered conclusive, they suggest that models like the ones
we propose could play a future role in ∆∆G predictions.

Apart from the overall levels of performance, the most remarkable feature of table 3 is that it shows
equal performance for the Cartesian and concentric cubed-sphere convolutions, despite the fact that
the former displayed substantially lower Q20 scores. This peculiar result points to an interesting

8



Table 3: Pearson correlation coefficients between experimentally measured and predicted changes of
stability for several sets of published stability measurements.

Rosetta FoldX CCSconv CSPconv Cartesian

Kellogg 0.65 0.70 0.66 0.64 0.66
Guerois 0.65 0.73 0.66 0.64 0.66
Potapov 0.52 0.59 0.52 0.51 0.52
ProTherm* 0.44 0.53 0.49 0.48 0.49

caveat in the interpretation of the predicted distribution over amino acids for a given environment.
At sufficiently high resolution of the structural environment, a perfect model would be able to
reliably predict the identity of the wild type amino acid by the specific shape of the hole it left
behind. This means that as models improve, the entropy of the predicted amino acid distributions is
expected to decrease, with increasingly peaked distributions centered at the wild type. An increased
sensitivity towards the exact molecular environment will therefore eventually decrease the models
ability to consider other amino acids at that position, leading to lower ∆∆G performance. The
missing ingredient in our approach is the structural rearrangement in the environments that occurs
as a consequence of the mutation. A full treatment of the problem should average the predictions
over the available structural variation, and structural resampling is indeed part of both Rosetta and
FoldX. For these reasons, it is difficult to make clear interpretations of the relative differences in
performance of the three convolution procedures in table 3. The overall performance of all three,
however, indicates that convolutions might be useful as part of a more comprehensive modelling
strategy such as those used in Rosetta and FoldX.

5 Conclusions

Convolutional neural networks are a powerful tool for analyzing spatial data. In this paper, we
investigated the possibility of extending the applicability of the technique to data in the 3-ball,
presenting two strategies for conducting convolutions in these spherical volumes. We assessed the
performance of the two strategies (and variants thereof) on various tasks in molecular modelling, and
demonstrate a substantial potential of these such concentric convolutional approaches to outperform
standard 3D convolutions for such data.

We expect that further improvements to the concentric convolution approach can be obtained by
improving the spherical convolutions themselves. In particular, a convolution operation that is
rotationally equivariant would provide greater data efficiency than the approach used here. Very
recently, a procedure for conducting convolutions in SO(3) was proposed, which seems to provide an
elegant solution to this problem (Cohen et al., 2018).

Finally, we note that while this manuscript was in review, another paper on the application of
convolutional neural networks for predicting amino acid preferences conditioned on structural
environments was published, by Torng and Altman (Torng and Altman, 2017). Their study is
conceptually similar to one of the applications described in this paper, but uses a Cartesian grid
and standard 3D convolution (in addition to other minor differences, such as a one-hot atom type
encoding). While Torng and Altman present a more thorough biological analysis in their paper than
we do here, the accuracy they report is considerably lower than what we obtained. Based on the
comparisons reported here, we anticipate that models such as theirs could be improved by switching
to a concentric representation.

6 Availability

The spherical convolution Tensorflow code and the datasets used in this paper are available at
https://github.com/deepfold.

Acknowledgments

This work was supported by the Villum Foundation (W.B., grant number VKR023445).

9

https://github.com/deepfold


References
A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M. Messier, E. Niner, G. Pawloski, F. Psihas, A. Sousa, and

P. Vahle. A convolutional neural network neutrino event classifier. Journal of Instrumentation, 11(9):P09001,
2016.

J. Behler and M. Parrinello. Generalized neural-network representation of high-dimensional potential-energy
surfaces. Physical Review Letters, 98(14):146401, 2007.

W. Boomsma, K. V. Mardia, C. C. Taylor, J. Ferkinghoff-Borg, A. Krogh, and T. Hamelryck. A generative,
probabilistic model of local protein structure. Proceedings of the National Academy of Sciences, 105(26):
8932–8937, 2008.

W. Boomsma, P. Tian, J. Frellsen, J. Ferkinghoff-Borg, T. Hamelryck, K. Lindorff-Larsen, and M. Vendrus-
colo. Equilibrium simulations of proteins using molecular fragment replacement and NMR chemical shifts.
Proceedings of the National Academy of Sciences, 111(38):13852–13857, 2014.

T. Cohen and M. Welling. Group equivariant convolutional networks. In M. F. Balcan and K. Q. Weinberger,
editors, Proceedings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings
of Machine Learning Research, pages 2990–2999, New York, USA, 2016.

T. S. Cohen, M. Geiger, J. Köhler, and M. Welling. Spherical CNNs. International Conference on Learning
Representations, 2018.

S. Ó. Conchúir, K. A. Barlow, R. A. Pache, N. Ollikainen, K. Kundert, M. J. O’Meara, C. A. Smith, and
T. Kortemme. A web resource for standardized benchmark datasets, metrics, and Rosetta protocols for
macromolecular modeling and design. PLoS ONE, 10(9):e0130433, 2015.

P. Eastman, M. S. Friedrichs, J. D. Chodera, R. J. Radmer, C. M. Bruns, J. P. Ku, K. A. Beauchamp, T. J. Lane,
L.-P. Wang, D. Shukla, T. Tye, M. Houston, T. Stich, C. Klein, M. R. Shirts, and V. S. Pande. OpenMM 4: a
reusable, extensible, hardware independent library for high performance molecular simulation. Journal of
Chemical Theory and Computation, 9(1):461–469, 2012.

X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In G. Gordon, D. Dunson, and
M. Dudík, editors, Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, volume 15 of Proceedings of Machine Learning Research, pages 315–323, Fort Lauderdale, FL,
USA, 2011.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

R. H. R. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and H. S. Seung. Digital selection and
analogue amplification coexist in a cortex-inspired silicon circuit. Nature, 405:947–951, 2000.

V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmerling. Comparison of multiple Amber
force fields and development of improved protein backbone parameters. Proteins: Structure, Function, and
Bioinformatics, 65(3):712–725, 2006.

A. Irbäck and S. Mohanty. PROFASI: a Monte Carlo simulation package for protein folding and aggregation.
Journal of Computational Chemistry, 27(13):1548–1555, 2006.

D. Jasrasaria, E. O. Pyzer-Knapp, D. Rappoport, and A. Aspuru-Guzik. Space-filling curves as a novel crystal
structure representation for machine learning models. arXiv, 1608.05747, 2016.

W. Kabsch and C. Sander. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded
and geometrical features. Biopolymers, 22(12):2577–2637, 1983.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In 3th International Conference on Learning
Representations, San Diego, USA, 2015.

K. V. Mardia and P. E. Jupp. Directional statistics, 2009.

K. Mills, M. Spanner, and I. Tamblyn. Deep learning and the Schrödinger equation. Physical Review A, 96:
042113, 2017.

S. Min, B. Lee, and S. Yoon. Deep learning in bioinformatics. Briefings in Bioinformatics, 18(5):851–869, 2017.

C. Ronchi, R. Iacono, and P. Paolucci. The "cubed sphere": A new method for the solution of partial differential
equations in spherical geometry. Journal of Computational Physics, 124(1):93–114, 1996.

10



K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Müller, and A. Tkatchenko. Quantum-chemical insights from
deep tensor neural networks. Nature Communications, 8:13890, 2017.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In 3th
International Conference on Learning Representations, San Diego, USA, 2015.

J. Smith, O. Isayev, and A. Roitberg. ANI-1: an extensible neural network potential with DFT accuracy at force
field computational cost. Chemical Science, 8(4):3192–3203, 2017.

W. Torng and R. B. Altman. 3D deep convolutional neural networks for amino acid environment similarity
analysis. BMC Bioinformatics, 18(1):302, 2017.

I. Wallach, M. Dzamba, and A. Heifets. AtomNet: a deep convolutional neural network for bioactivity prediction
in structure-based drug discovery. arXiv, 1510.02855, 2015.

G. Wang and R. L. Dunbrack. PISCES: a protein sequence culling server. Bioinformatics, 19(12):1589–1591,
2003.

S. Wang, J. Peng, J. Ma, and J. Xu. Protein secondary structure prediction using deep convolutional neural fields.
Scientific Reports, 6, 2016.

J. M. Word, S. C. Lovell, J. S. Richardson, and D. C. Richardson. Asparagine and glutamine: using hydrogen
atom contacts in the choice of side-chain amide orientation. Journal of Molecular Biology, 285(4):1735–1747,
1999.

11


