
Character-Level Language Modeling with Recurrent
Highway Hypernetworks

Joseph Suarez
Stanford University

joseph15@stanford.edu

Abstract

We present extensive experimental and theoretical support for the efficacy of re-
current highway networks (RHNs) and recurrent hypernetworks complimentary to
the original works. Where the original RHN work primarily provides theoretical
treatment of the subject, we demonstrate experimentally that RHNs benefit from
far better gradient flow than LSTMs in addition to their improved task accuracy.
The original hypernetworks work presents detailed experimental results but leaves
several theoretical issues unresolved–we consider these in depth and frame sev-
eral feasible solutions that we believe will yield further gains in the future. We
demonstrate that these approaches are complementary: by combining RHNs and
hypernetworks, we make a significant improvement over current state-of-the-art
character-level language modeling performance on Penn Treebank while relying on
much simpler regularization. Finally, we argue for RHNs as a drop-in replacement
for LSTMs (analogous to LSTMs for vanilla RNNs) and for hypernetworks as a
de-facto augmentation (analogous to attention) for recurrent architectures.

1 Introduction and related works

Recurrent architectures have seen much improvement since their inception in the 1990s, but they
still suffer significantly from the problem of vanishing gradients [1]. Though many consider LSTMs
[2] the de-facto solution to vanishing gradients, in practice, the problem is far from solved (see
Discussion). Several LSTM variants have been developed, most notably GRUs [3], which are simpler
than LSTM cells but benefit from only marginally better gradient flow. Greff et al. and Britz et al.
conducted exhaustive (for all practical purposes) architecture searches over simple LSTM variants
and demonstrated that none achieved significant improvement [4] [5]–in particular, the latter work
discovered that LSTMs consistently outperform comparable GRUs on machine translation, and no
proposed cell architecture to date has been proven significantly better than the LSTM. This result
necessitated novel approaches to the problem.

One approach is to upscale by simply stacking recurrent cells and increasing the number of hidden
units. While there is certainly some optimal trade off between depth and cell size, with enough data,
simply upscaling both has yielded remarkable results in neural machine translation (NMT) [6].1
However, massive upscaling is impractical in all but the least hardware constrained settings and fails
to remedy fundamental architecture issues, such as poor gradient flow inherent in recurrent cells
[8]. We later demonstrate that gradient issues persist in LSTMs (see Results) and that the grid-like
architecture of stacked LSTMs is suboptimal.

1For fair comparison, Google’s NMT system does far more than upscaling and includes an explicit attentional
mechanism [7]. We do not experiment with attention and/or residual schemes, but we expect the gains made by
such techniques to stack with our work.
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The problem of gradient flow can be somewhat mitigated by the adaptation of Batch Normalization [9]
to the recurrent case [10] [11]. While effective, it does not solve the problem entirely and also imposes
significant overhead in memory and thus in performance, given the efficiency of parallelization over
minibatches. This is often offset by a reduction in total epochs over the data required, but recurrent
architectures with better gradient flow could ideally provide comparable or better convergence without
reliance upon explicit normalization.

Zilly et al. recently proposed recurrent highway networks (RHNs) and offered copious theoretical
support for the architecture’s improved gradient flow [12]. However, while the authors provided
mathematical rigor, we believe that experimental confirmation of the authors’ claims could further
demonstrate the model’s simplicity and widespread applicability. Furthermore, we find that the
discussion of gradient flow is more nuanced than presented in the original work (see Discussion).

Ha et al. recently questioned the weight-sharing paradigm common among recurrent architectures,
proposing hypernetworks as a mechanism for allowing weight drift between timesteps [13]. This
consideration is highly desirable, given the successes of recent convolutional architectures on language
modeling tasks [14] [15], which were previously dominated by recurrent architectures.

Both RHNs and hypernetworks achieved state-of-the-art (SOTA) on multiple natural language
processing (NLP) tasks at the time. As these approaches address unrelated architectural issues, it
should not be surprising that combining them yields SOTA on Penn Treebank [16] (PTB), improving
significantly over either model evaluated individually. We consider both RHNs and hypernetworks
to be largely overlooked in recent literature on account of apparent rather than extant complexity.
Furthermore, the original RHN work lacks sufficient experimental demonstration of improved gradient
flow; the original hypernetworks work lacks theoretical generalization of their weight-drift scheme.
We present experimental results for RHNs complementary to the original work’s theoretical results
and theoretical results for hypernetworks complementary to the original work’s experimental results.

Founded on these results, our most important contribution is a strong argument for the utility of RHNs
and hypernetworks, both individually and jointly, in constructing improved recurrent architectures.

2 Model architecture

2.1 Recurrent highway networks

We make a few notational simplifications to the original RHN equations that will later facilitate
extensibility. We find it clearest and most succinct to be programmatic in our notation 2. First,
consider the GRU:

[h, t] =xiU + si−1W r =tanh(xiÛ + (si−1 ◦ h)Ŵ )

h, t =σ(h), σ(t) si =(1− t) ◦ r + t ◦ si−1
(1)

where x ∈ Rd, h, t, r, st ∈ Rn, and U, Û ∈ Rd×2n,W, Ŵ ∈ Rn×2n are weight matrices where
d, n are the input and hidden dimensions. σ is the sigmoid nonlinearity, and ◦ is the Hadamard
(elementwise) product. A one layer RHN cell is a simplified GRU variant:

[h, t] =xiU + si−1W si =(1− t) ◦ si−1 + t ◦ h
h, t =tanh(h), σ(t)

(2)

where the definitions from above hold. The RHN is extended to arbitrary depth by simply stacking
this cell with new hidden weight matrices, with the caveat that xiU is omitted except at the input
layer:

RHNCell(xi, si−1, l) :

[h, t] =1 [l = 0]xiU + si−1W c, t =1− t, dropout(t)
h, t =tanh(h), σ(t) si =c ◦ si−1 + t ◦ h

(3)

where l is the layer index, which is used as an indicator. We can introduce recurrent dropout [17] on t
across all layers with a single hyperparameter. We later demonstrate strong results without the need
for more complex regularization or layer normalization. Finally, unlike stacked LSTMs, RHNs are
structurally linear. That is, a depth L RHN applied to a sequence of length M can be unrolled to a
simple depth ML network. We restate this fact from the original work only because it is important to
our analysis, which we defer to Results and Discussion.

2Note that for purpose of clean alignment, equations are presented top to bottom, then left to right.
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2.2 Hypernetworks

We slightly alter the original notation of recurrent hypernetworks for ease of combination with RHNs.
We define a hypervector z as a linear upscaling projection applied to the outputs of a small recurrent
network:

z(a) =Wpa (4)

where a ∈ Rh is the activation vector output by an arbitrary recurrent architecture, Wp ∈ Rn×h is an
upscaling projection from dimension h to n, and h� n. The hypervector is then used to scale the
weights of the main recurrent network by:

W̃ (z(a)) = z(a) ◦W (5)

where we overload ◦ as the element-wise product across columns. That is, each element of z scales
one column (or row, depending on notation) of W . As this constitutes a direct modification of the
weights, hypernetworks have the interpretation of relaxing the weight sharing constraint implicit in
RNNs.

2.3 Recurrent highway hypernetworks

We adapt hypernetworks to RHNs by directly modifying the RHN cell using (5):

RHNCellHyper(xi, si−1, l, z) :

[h, t] =1 [l = 0]xiŨ(z) + si−1W̃ (z) c, t =1− t, dropout(t)
h, t =tanh(h), σ(t) si =c ◦ si−1 + t ◦ h

(6)

If RHNCell and RHNCellHyper had the same state sizes, we could simply stack them. However,
as the hypernetwork is much smaller than the main network by design, we instead must upscale
between the networks. Our final architecture at each timestep for layer l can thus be written:

sh =RHNCell(sh, l) z =[Mplsh,Mplsh] sn =RHNCellHyper(sn, l, z) (7)

where Mpl ∈ Rh×n is the upscale projection matrix for layer l and z is the concatenation of Mplsh
with itself. Notice the simplicity of this extension–it is at least as straightforward to extend RHNs as
GRUs and LSTMs. Again, we use only simple recurrent dropout for regularization.

A few notes, for clarity and ease of reproduction: as the internal weight matrices of the main network
have different dimensionality (Ul ∈ Rd×2n,Wl ∈ Rn×2n), we require the concatenation operation to
form z in (7). We find this works much better than simply using larger projection matrices. Also,
sh, sn in (7) are the hypernetwork and main network states, respectively. This may seem backwards
from the notation above, but note that the hypernetwork is a standard, unmodified RHNCell; its
outputs are then used in the main network, which is the modified RHNCellHyper.

3 Results (experimental)

3.1 Penn Treebank

Penn Treebank (PTB) contains approximately 5.10M/0.40M/0.45M characters in the train/val/test sets
respectively and has a small vocabulary of 50 characters. There has recently been some controversy
surrounding results on PTB: Jozefowicz et al. went as far to say that performance on such small
datasets is dominated by regularization [18]. Radford et al. chose to evaluate language modeling
performance only upon the (38GB) Amazon Product Review dataset for this reason [19].

Performance on large, realistic datasets is inarguably a better metric of architecture quality than
performance on smaller datasets such as PTB. However, such metrics make comparison among
models nearly impossible: performance on large datasets is non-standard because evaluation at this
scale is infeasible in many research settings simply because of limited hardware access. While
most models can be trained on 1-4 GPUs within a few weeks, this statement is misleading, as
significantly more hardware is required for efficient development and hyperparameter search. We
therefore emphasize the importance of small datasets for standardized comparison among models.
Hutter is a medium sized task (approximately 20 times larger than PTB) that should be feasible in
most settings (e.g. the original RHN and Hypernetwork works). We are only reasonably able to
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Table 1: Comparison of bits per character (BPC) test errors on PTB. We achieve SOTA without layer
normalization, improving over vanilla hypernetworks, which require layer normalization

Model Test Val Params (M)

LSTM 1.31 1.35 4.3
2-Layer LSTM 1.28 1.31 12.2
2-Layer LSTM (1125 hidden, ours) – 1.29 15.6
HyperLSTM 1.26 1.30 4.9
Layer Norm LSTM 1.27 1.30 4.3
Layer Norm HyperLSTM 1.25 1.28 4.9
Layer Norm HyperLSTM (large embed) 1.23 1.26 5.1
2-Layer Norm HyperLSTM, 1000 units 1.22 1.24 14.4
Recurrent Highway Network (ours) - 1.24 14.0
HyperRHN (ours) 1.19 1.21 15.5

evaluate on PTB due to a strict hardware limitation of two personally owned GPUs. We therefore
take additional precautions to ensure fair comparison:

First, we address the critiques of Jozefoqicz et al. by avoiding complex regularization. We use
only simple recurrent dropout with a uniform probability across layers. Second, we minimally
tune hyperparameters as discussed below. Finally, we are careful with the validation data and
run the test set only once on our best model. We believe these precautions prevent overfitting the
domain and corroborate the integrity of our result. Furthermore, SOTA performance with suboptimal
hyperparameters demonstrates the robustness of our model.

3.2 Architecture and training details

In addition to our HyperRHN, we consider our implementations of a 2-Layer LSTM and a plain RHN
below. All models, including hypernetworks and their strong baselines, are compared in Table 1.
Other known published results are included in the original hypernetworks work, but have test bpc ≥
1.27. We train all models using Adam [20] with the default learning rate 0.001 and sequence length
100, batch size 256 (the largest that fits in memory for our main model) on a single GTX 1080 Ti
until overfitting becomes obvious. We evaluate test performance only once and only on our main
model, using the validation set for early stopping.

Our data batcher loads the dataset into main memory as a single contiguous block and reshapes it to
column size 100. We do not zero pad for efficiency and no distinction is made between sentences
for simplicity. Data is embedded into a 27 dimensional vector. We do not cross validate any
hyperparameters except for dropout.

We first consider our implementation of a 2-Layer LSTM with hidden dimension 1125, which yields
approximately as many learnable parameters as our main model. We train for 350 epochs with
recurrent dropout probability 0.9. As expected, our model performs slightly better than the slightly
smaller baseline in the original hypernetworks work. We use this model in gradient flow comparisons
(see Discussion)

As the original RHN work presents only word-level results for PTB, we trained a RHN baseline by
simply disabling the Hypernetwork augmentation. Convergence was achieved in 618 epochs.

Our model consists of a recurrent highway hypernetwork with 7 layers per cell. The main network has
1000 neurons per layer and the hypernetwork has 128 neurons per layer, for a total of approximately
15.2M parameters. Both subnetworks use a recurrent dropout keep probability of 0.65 and no other
regularizer/normalizer. We attribute our model’s ability to perform without layer normalization to the
improved gradient flow of RHNs (see Discussion).

The model converges in 660 epochs, obtaining test perplexity 2.29 (where cross entropy corresponds
to loge of perplexity) and 1.19 bits per character (BPC, log2 of perplexity), 74.6 percent accuracy. By
epoch count, our model is comparable to a plain RHN but performs better. Training takes 2-3 days
(fairly long for PTB) compared to 1-2 days for a plain RHN and a few hours for an LSTM. However,
this comparison is unfair: all models require a similar number of floating point operations and differ
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primarily in backend implementation optimization. We consider possible modifications to our model
that take advantage of existing optimization in Results (theoretical), below.

Finally, we note that reporting of accuracy is nonstandard. Accuracy is a standard metric in vision;
we encourage its adoption in language modeling, as BPC is effectively a change of base applied
to standard cross entropy and is exponential in scale. This downplays the significance of gains
where the error ceiling is likely small. Accuracy is more immediately comparable to maximum task
performance, which we estimate to be well below 80 percent given the recent trend of diminishing
returns coupled with genuine ambiguity in the task. Human performance is roughly 55 percent, as
measured by our own performance on the task.

4 Results (theoretical)

Our final model is a direct adaptation of the original hypervector scaling factor to RHNs. However,
we did attempt a generalization of hypernetworks and encountered extreme memory considerations
that have important implications for future work. Notice that the original hypernetwork scaling factor
is equivalent to element-wise multiplication by a rank-1 matrix (e.g. the outer product of z with
a ones vector, which does not include all rank-1 matrices). Ideally, we should be able to scale by
any matrix at all. As mentioned by the authors, naively generating different scaling vectors for each
column of the weight matrix is prohibitively expensive in both memory and computation time. We
propose a low rank-d update inspired by the thin singular value decomposition as follows:

W̃ =W ◦
d∑

i=1

uiv
>
i (8)

Compared to the original scaling update, our variation has memory and performance cost linear in
the rank of the update. As with the SVD, we would expect most of the information relevant to the
weight drift scale to be contained in a relatively low-rank update. However, we were unable to verify
this hypothesis due to a current framework limitation. All deep learning platforms currently assemble
computation graphs, and this low rank approximation is added as a node in the graph. This requires
memory equal to the dimensionality of the scaling matrix per training example!

The original hypernetworks update is only feasible because of a small mathematical trick: row-wise
scaling of the weight matrix is equal to elementwise multiplication after the matrix-vector multiply.
Note that this is a practical rather than theoretical limitation. As variations in the weights of the
hypernetwork arise only as a function of variations in ui, vi,W , it is possible to define a custom
gradient operation that does not need to store the low rank scaling matrices at each time step for
backpropagation.

Lastly, we note that hypernetworks are a new and largely unexplored area of research. Even without
the above addition, hypernetworks have yielded large improvements on a diverse array of tasks
while introducing a minimal number of additional parameters. The only reason we cannot currently
recommend hypernetworks as a drop-in network augmentation for most tasks (compare to e.g.
attention) is another framework limitation. Despite requiring far fewer floating point operations than
the larger main network, adding a hypernetwork still incurs nearly a factor of two in performance.
This is due to the extreme efficiency of parallelization over large matrix multiplies; the overhead is
largely time spent copying data. We propose rolling the hypernetwork into the main network. This
could be accomplished by simply increasing the hidden dimension by the desired hypernetwork
dimension h. The first h elements of the activation can then be treated as the hypervector. Note that
this may require experimentation with matrix blocking and/or weight masking schemes in order to
avoid linear interactions between the hypernetwork and main network during matrix multiplication.

The issues and solutions above are left as thought experiments; we prioritize our limited computational
resources towards experimental efforts on recurrent highway networks. The theoretical results above
are included to simultaneously raise and assuage concerns surrounding generalization and efficiency
of hypernetworks. We see additional development of hypernetworks as crucial to the continued
success of our recurrent model in the same manner that attention is a necessary, de-facto network
augmentation in machine translation (and we further expect the gains to stack). Our model’s strong
language modeling result using a single graphics card was facilitated by the small size of PTB, which
allowed us to afford the 2X computational cost of recurrent hypernetworks. We present methods
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Figure 1: Visualization of hyper recurrent highway network training convergence

for optimizing the representational power and computational cost of hypernetworks; additional
engineering will still be required in order to fully enable efficient training on large datasets.

5 Discussion (experimental)

5.1 Training time

We visualize training progress in Fig. 1. Notice that validation perplexity seems to remain below
training perplexity for nearly 500 epochs. While the validation and test sets in PTB appear slightly
easier than the training set, the cause of this artifact is that the validation loss is masked by a minimum
50-character context whereas the training loss is not (we further increase minimum context to 95 after
training and observe a small performance gain), therefore the training loss suffers from the first few
impossible predictions at the start of each example. The validation data is properly overlapped such
that performance is being evaluated over the entire set.

It may also seem surprising that the model takes over 600 epochs to converge, and that training
progress appears incredibly slow towards the end. We make three observations: first, we did not
experiment with different optimizers, annealing the learning rate, or even the fixed learning rate
itself. Second, as the maximum task accuracy is unknown, it is likely that gains small on an absolute
scale are large on a relative scale. We base this conjecture on the diminishing gains of recent work
on an absolute scale: we find that the difference between 1.31 (1 layer LSTM) and 1.19 bpc (our
model) is approximately 71.1-74.6 percent accuracy. For reference, our improvement over the original
hypernetworks work is approximately 1.0 percent (this figure is obtained from interpolation on the
BPC scale). Third and finally, regardless of whether our second observation is true, our architecture
exhibits similar convergence to a RHN and begins outperforming the 2-layer LSTM baseline before
the latter converges.

5.2 Overview of visualizations

Our motivation in the visualizations that follow is to compare desirable and undesirable properties
of our RHN-based model and standard recurrent models, namely stacked LSTMs. There are two
natural gradient visualizations: within-cell gradients, which are averaged over time but not over all
of the weight layers within the recurrent cell, and outside-cell gradients, which are averaged over
internal weight layers but not over time. Time-averaged gradients are less useful to our discussion
than the norms of raw weight layers; we therefore present these along with outside-cell gradient
visualizations.

5.3 Cell visualizations

We visualize the 2-norms of the learned weight layers of our RHN-based model in Fig. 2 and of an
LSTM baseline (2 layers, 1150 hidden units, recurrent dropout keep p=0.90, 15.6M parameters) in
Fig. 3.

Notice that in the middle six layers (the first/last layers have different dimensionality and are
incomparable) of the RHN block (Fig. 2), weight magnitude decreases with increasing layer depth.
We view this as evidence for the iterative-refinement view of deep learning, as smaller updates are
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Figure 2: L2 norms of learned weights in our recurrent highway hypernetwork model. Increasing
depth is shown from left to right in each block of layers. As dimensionality differs between blocks,
the middle layers of each block are incomparable to the first/last layers, hence the disparity in norm.

Figure 3: L2 norms of learned weights in our 2-layer LSTM baseline, with layer 1 left of layer 2.

applied in deeper layers. This is first evidence of this paradigm that we are aware of in the recurrent
case, as similar statistics in stacked LSTMs are less conclusive because of horizontal grid connections.
This also explains why performance gains diminish as RHN depth increases, as was noted in the
original work.

5.4 Gradient visualizations over time

We consider the mean L2-norms of the gradients of the activations with respect to the loss at the final
timestep. But first, an important digression: when should we visualize gradient flow: at initialization,
during training, or after convergence? To our knowledge, this matter has not yet received direct
treatment. Fig. 4 is computed at initialization and seems to suggest that RHNs are far inferior to
LSTMs in the multilayer case, as the network cannot possibly learn in the presence of extreme
vanishing gradients. This line of reasoning lacks the required nuance, which we discuss below.

6 Discussion (theoretical)

We address the seemingly inconsistent experimental results surrounding gradient flow in RHN.

First, we note that the LSTM/RHN comparison is unfair: multilayer LSTM/GRU cells are laid out in
a grid. The length of the gradient path is equal to the sum of the sequence length and the number of
layers (minus one); in an RHN, it is equal to the product. In the fair one layer case, we found that the
RHN actually possesses far greater initial gradient flow. Second, these intuitions regarding vanishing
gradients at initialization are incorrect. As shown in Fig. 5, gradient flow improves dramatically after
training for just one epoch. By convergence, as shown in Fig. 6, results shift in the favor of RHNs,
confirming experimentally the theoretical gradient flow benefits of RHNs over LSTMs.

Third, we address a potential objection. One might argue that while the gradient curves of our RHN
based model and the LSTM baseline are similar in shape, the magnitude difference is misleading.
For example, if LSTMs naturally have a million times smaller weights, then the factor of a hundred
magnitude difference in Fig. 6 would actually demonstrate superiority of the LSTM. This is the
reason for our consideration of weight norms in Fig. 2-3, which show that LSTMs have only 100
times smaller weights. Thus the gradient curves in Fig. 6 are effectively comparable in magnitude.
However, RHNs maintain gradient flow equal to that of stacked LSTMs while having far greater
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Figure 4: Layer-averaged gradient comparison between our model and an LSTM baseline. Gradients
are computed at initialization at the input layer of each timestep with respect to the final timestep’s
loss. Weights are initialized orthogonally.

Figure 5: Identical to Fig. 4, but gradients are computed from models trained for one epoch.

Figure 6: Identical to Fig. 4, but gradients are computed after convergence.

gradient path length, thus the initial comparison is unfair. We believe that this is the basis for the
RHN’s performance increase over the LSTM: RHNs allow much greater effective network depth
without incurring additional gradient vanishing.

Fourth, we experimented with adding the corresponding horizontal grid connections to our RHN,
obtaining significantly better gradient flow. With the same parameter budget as our HyperRHN model,
this variant obtains 1.40 bpc–far inferior to our HyperRHN, though it could likely be optimized
somewhat. It appears that long gradient paths are precisely the advantage in RHNs. We therefore
suggest that gradient flow specifically along the deepest gradient path is an important consideration
in architecture design: it provides an upper limit on effective network depth. It appears that greater
effective depth is precisely the advantage in modeling potential of the RHN.

7 Conclusion

We present a cohesive set of contributions to recurrent architectures. First, we provide strong
experimental evidence for RHNs as a simple drop-in replacement for stacked LSTMs and a detailed
discussion of several engineering optimizations that could further performance. Second, we visualize

8



and discuss the problem of vanishing gradients in recurrent architectures, revealing that gradient flow
significantly shifts during training, which can lead to misleading comparisons among models. This
demonstrates that gradient flow should be evaluated at or near convergence; using this metric, we
confirm that RHNs benefit from far greater effective depth than stacked LSTMs while maintaining
equal gradient flow. Third, we suggest multiple expansions upon hypernetworks for future work that
have the potential to significantly improve efficiency and generalize the weight-drift paradigm. This
could lead to further improvement upon our architecture and, we hope, facilitate general adoption
of hypernetworks as a network augmentation. Finally, we demonstrate effectiveness by presenting
and open sourcing (code 3) a combined architecture that obtains SOTA on PTB with minimal
regularization and tuning which normally compromise results on small datasets.
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