NIPS Proceedingsβ

Principles of Riemannian Geometry in Neural Networks

Part of: Advances in Neural Information Processing Systems 30 (NIPS 2017) pre-proceedings

Pre-Proceedings

[PDF] [BibTeX] [Supplemental] [Reviews]

Authors

Conference Event Type: Poster

Abstract

This study deals with neural networks in the sense of geometric transformations acting on the coordinate representation of the underlying data manifold which the data is sampled from. It forms part of an attempt to construct a formalized general theory of neural networks in the setting of Riemannian geometry. From this perspective, the following theoretical results are developed and proven for feedforward networks. First it is shown that residual neural networks are finite difference approximations to dynamical systems of first order differential equations, as opposed to ordinary networks that are static. This implies that the network is learning systems of differential equations governing the coordinate transformations that represent the data. Second it is shown that a closed form solution of the metric tensor on the underlying data manifold can be found by backpropagating the coordinate representations learned by the neural network itself. This is formulated in a formal abstract sense as a sequence of Lie group actions on the metric fibre space in the principal and associated bundles on the data manifold. Toy experiments were run to confirm parts of the proposed theory, as well as to provide intuitions as to how neural networks operate on data.