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Abstract

Generative Adversarial Networks (GANs) are powerful models for learning com-
plex distributions. Stable training of GANs has been addressed in many recent
works which explore different metrics between distributions. In this paper we
introduce Fisher GAN which fits within the Integral Probability Metrics (IPM)
framework for training GANs. Fisher GAN defines a critic with a data dependent
constraint on its second order moments. We show in this paper that Fisher GAN
allows for stable and time efficient training that does not compromise the capacity
of the critic, and does not need data independent constraints such as weight clip-
ping. We analyze our Fisher IPM theoretically and provide an algorithm based on
Augmented Lagrangian for Fisher GAN. We validate our claims on both image
sample generation and semi-supervised classification using Fisher GAN.

1 Introduction

Generative Adversarial Networks (GANs) [1] have recently become a prominent method to learn
high-dimensional probability distributions. The basic framework consists of a generator neural
network which learns to generate samples which approximate the distribution, while the discriminator
measures the distance between the real data distribution, and this learned distribution that is referred
to as fake distribution. The generator uses the gradients from the discriminator to minimize the
distance with the real data distribution. The distance between these distributions was the object of
study in [2], and highlighted the impact of the distance choice on the stability of the optimization. The
original GAN formulation optimizes the Jensen-Shannon divergence, while later work generalized
this to optimize f-divergences [3], KL [4], the Least Squares objective [5]. Closely related to our
work, Wasserstein GAN (WGAN) [6] uses the earth mover distance, for which the discriminator
function class needs to be constrained to be Lipschitz. To impose this Lipschitz constraint, WGAN
proposes to use weight clipping, i.e. a data independent constraint, but this comes at the cost of
reducing the capacity of the critic and high sensitivity to the choice of the clipping hyper-parameter.
A recent development Improved Wasserstein GAN (WGAN-GP) [7] introduced a data dependent
constraint namely a gradient penalty to enforce the Lipschitz constraint on the critic, which does not
compromise the capacity of the critic but comes at a high computational cost.

We build in this work on the Integral probability Metrics (IPM) framework for learning GAN of [8].
Intuitively the IPM defines a critic function f , that maximally discriminates between the real and
fake distributions. We propose a theoretically sound and time efficient data dependent constraint on
the critic of Wasserstein GAN, that allows a stable training of GAN and does not compromise the
capacity of the critic. Where WGAN-GP uses a penalty on the gradients of the critic, Fisher GAN
imposes a constraint on the second order moments of the critic. This extension to the IPM framework
is inspired by the Fisher Discriminant Analysis method.

The main contributions of our paper are:
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1. We introduce in Section 2 the Fisher IPM, a scaling invariant distance between distributions.
Fisher IPM introduces a data dependent constraint on the second order moments of the critic that
discriminates between the two distributions. Such a constraint ensures the boundedness of the metric
and the critic. We show in Section 2.2 that Fisher IPM when approximated with neural networks,
corresponds to a discrepancy between whitened mean feature embeddings of the distributions. In
other words a mean feature discrepancy that is measured with a Mahalanobis distance in the space
computed by the neural network.
2. We show in Section 3 that Fisher IPM corresponds to the Chi-squared distance (�

2

) when the
critic has unlimited capacity (the critic belongs to a universal hypothesis function class). Moreover
we prove in Theorem 2 that even when the critic is parametrized by a neural network, it approximates
the �

2

distance with a factor which is a inner product between optimal and neural network critic. We
finally derive generalization bounds of the learned critic from samples from the two distributions,
assessing the statistical error and its convergence to the Chi-squared distance from finite sample size.
3. We use Fisher IPM as a GAN objective 1 and formulate an algorithm that combines desirable
properties (Table 1): a stable and meaningful loss between distributions for GAN as in Wasserstein
GAN [6], at a low computational cost similar to simple weight clipping, while not compromising the
capacity of the critic via a data dependent constraint but at a much lower computational cost than [7].
Fisher GAN achieves strong semi-supervised learning results without need of batch normalization in
the critic.

Table 1: Comparison between Fisher GAN and recent related approaches.
Stability Unconstrained Efficient Representation

capacity Computation power (SSL)
Standard GAN [1, 9] 7 3 3 3
WGAN, McGan [6, 8] 3 7 3 7
WGAN-GP [7] 3 3 7 ?
Fisher Gan (Ours) 3 3 3 3

2 Learning GANs with Fisher IPM

2.1 Fisher IPM in an arbitrary function space: General framework

Integral Probability Metric (IPM). Intuitively an IPM defines a critic function f belonging to a
function class F , that maximally discriminates between two distributions. The function class F
defines how f is bounded, which is crucial to define the metric. More formally, consider a compact
space X in Rd. Let F be a set of measurable, symmetric and bounded real valued functions on
X . Let P(X ) be the set of measurable probability distributions on X . Given two probability
distributions P, Q 2P(X ), the IPM indexed by a symmetric function space F is defined as follows
[10]: dF (P, Q) = sup

f2F

n

E
x⇠P

f(x)� E
x⇠Q

f(x)

o

. (1)

It is easy to see that dF defines a pseudo-metric over P(X ). Note specifically that if F is not
bounded, sup

f

will scale f to be arbitrarily large. By choosing F appropriately [11], various
distances between probability measures can be defined.

First formulation: Rayleigh Quotient. In order to define an IPM in the GAN context, [6, 8] impose
the boundedness of the function space via a data independent constraint. This was achieved via
restricting the norms of the weights parametrizing the function space to a `

p

ball. Imposing such a
data independent constraint makes the training highly dependent on the constraint hyper-parameters
and restricts the capacity of the learned network, limiting the usability of the learned critic in a semi-
supervised learning task. Here we take a different angle and design the IPM to be scaling invariant
as a Rayleigh quotient. Instead of measuring the discrepancy between means as in Equation (1), we
measure a standardized discrepancy, so that the distance is bounded by construction. Standardizing
this discrepancy introduces as we will see a data dependent constraint, that controls the growth of the
weights of the critic f and ensures the stability of the training while maintaining the capacity of the
critic. Given two distributions P, Q 2P(X ) the Fisher IPM for a function space F is defined as
follows:

dF (P, Q) = sup

f2F

E
x⇠P

[f(x)]� E
x⇠Q

[f(x)]

p

1/2E
x⇠Pf2

(x) +

1/2E
x⇠Qf2

(x)

. (2)

1Code is available at https://github.com/tomsercu/FisherGAN
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Figure 1: Illustration of Fisher IPM with Neural Networks. �

!

is a convolutional neural network
which defines the embedding space. v is the direction in this embedding space with maximal mean
separation hv, µ

!

(P)� µ
!

(Q)i, constrained by the hyperellipsoid v> ⌃

!

(P; Q) v = 1.

While a standard IPM (Equation (1)) maximizes the discrepancy between the means of a function
under two different distributions, Fisher IPM looks for critic f that achieves a tradeoff between
maximizing the discrepancy between the means under the two distributions (between class variance),
and reducing the pooled second order moment (an upper bound on the intra-class variance).

Standardized discrepancies have a long history in statistics and the so-called two-samples hypothesis
testing. For example the classic two samples Student’s t� test defines the student statistics as the
ratio between means discrepancy and the sum of standard deviations. It is now well established that
learning generative models has its roots in the two-samples hypothesis testing problem [12]. Non
parametric two samples testing and model criticism from the kernel literature lead to the so called
maximum kernel mean discrepancy (MMD) [13]. The MMD cost function and the mean matching
IPM for a general function space has been recently used for training GAN [14, 15, 8].

Interestingly Harchaoui et al [16] proposed Kernel Fisher Discriminant Analysis for the two samples
hypothesis testing problem, and showed its statistical consistency. The Standard Fisher discrepancy
used in Linear Discriminant Analysis (LDA) or Kernel Fisher Discriminant Analysis (KFDA) can

be written: sup

f2F

✓
E

x⇠P
[f(x)]� E

x⇠Q
[f(x)]

◆
2

Var

x⇠P(f(x))+Var

x⇠Q(f(x))

, where Var

x⇠P(f(x)) = E
x⇠Pf2(x) � (E

x⇠P(f(x)))

2.
Note that in LDA F is restricted to linear functions, in KFDA F is restricted to a Reproducing
Kernel Hilbert Space (RKHS). Our Fisher IPM (Eq (2)) deviates from the standard Fisher discrepancy
since the numerator is not squared, and we use in the denominator the second order moments instead
of the variances. Moreover in our definition of Fisher IPM, F can be any symmetric function class.

Second formulation: Constrained form. Since the distance is scaling invariant, dF can be written
equivalently in the following constrained form:

dF (P, Q) = sup

f2F ,

1

2

E
x⇠Pf

2

(x)+

1

2

E
x⇠Qf

2

(x)=1

E (f) := E
x⇠P

[f(x)]� E
x⇠Q

[f(x)]. (3)

Specifying P, Q: Learning GAN with Fisher IPM. We turn now to the problem of learning GAN
with Fisher IPM. Given a distribution P

r

2P(X ), we learn a function g
✓

: Z ⇢ Rn

z ! X , such
that for z ⇠ p

z

, the distribution of g
✓

(z) is close to the real data distribution P
r

, where p
z

is a fixed
distribution on Z (for instance z ⇠ N (0, I

n

z

)). Let P
✓

be the distribution of g
✓

(z), z ⇠ p
z

. Using
Fisher IPM (Equation (3)) indexed by a parametric function class F

p

, the generator minimizes the
IPM: min

g

✓

dF
p

(P
r

, P
✓

). Given samples {x
i

, 1 . . . N} from P
r

and samples {z
i

, 1 . . . M} from p
z

we shall solve the following empirical problem:

min

g

✓

sup

f

p

2F
p

ˆE (f
p

, g
✓

) :=

1

N

N

X

i=1

f
p

(x
i

)� 1

M

M

X

j=1

f
p

(g
✓

(z
j

)) Subject to ˆ

⌦(f
p

, g
✓

) = 1, (4)

where ˆ

⌦(f
p

, g
✓

) =

1

2N

P

N

i=1

f2

p

(x
i

) +

1

2M

P

M

j=1

f2

p

(g
✓

(z
j

)). For simplicity we will have M = N .
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2.2 Fisher IPM with Neural Networks

We will specifically study the case where F is a finite dimensional Hilbert space induced by a
neural network �

!

(see Figure 1 for an illustration). In this case, an IPM with data-independent
constraint will be equivalent to mean matching [8]. We will now show that Fisher IPM will give rise
to a whitened mean matching interpretation, or equivalently to mean matching with a Mahalanobis
distance.

Rayleigh Quotient. Consider the function space F
v,!

, defined as follows
F

v,!

= {f(x) = hv, �
!

(x)i |v 2 Rm, �
!

: X ! Rm},

�

!

is typically parametrized with a multi-layer neural network. We define the mean and covariance
(Gramian) feature embedding of a distribution as in McGan [8]:

µ
!

(P) = E
x⇠P

(�

!

(x)) and ⌃

!

(P) = E
x⇠P

�

�

!

(x)�

!

(x)

>� ,

Fisher IPM as defined in Equation (2) on F
v,!

can be written as follows:

dF
v,!

(P, Q) = max

!

max

v

hv, µ
!

(P)� µ
!

(Q)i
q

v>(

1

2

⌃

!

(P) +

1

2

⌃

!

(Q) + �I
m

)v
, (5)

where we added a regularization term (� > 0) to avoid singularity of the covariances. Note that if �

!

was implemented with homogeneous non linearities such as RELU, if we swap (v, !) with (cv, c0!)

for any constants c, c0 > 0, the distance dF
v,!

remains unchanged, hence the scaling invariance.

Constrained Form. Since the Rayleigh Quotient is not amenable to optimization, we will consider
Fisher IPM as a constrained optimization problem. By virtue of the scaling invariance and the
constrained form of the Fisher IPM given in Equation (3), dF

v,!

can be written equivalently as:
dF

v,!

(P, Q) = max

!,v,v

>
(

1

2

⌃

!

(P)+

1

2

⌃

!

(Q)+�I

m

)v=1

hv, µ
!

(P)� µ
!

(Q)i (6)

Define the pooled covariance: ⌃

!

(P; Q) =

1

2

⌃

!

(P) +

1

2

⌃

!

(Q) + �I
m

. Doing a simple change of
variable u = (⌃

!

(P; Q))

1

2 v we see that:

dF
u,!

(P, Q) = max

!

max

u,kuk=1

D

u, (⌃
!

(P; Q))

� 1

2

(µ
!

(P)� µ
!

(Q))

E

= max

!

�

�

�

(⌃

!

(P; Q))

� 1

2

(µ
!

(P)� µ
!

(Q))

�

�

�

, (7)

hence we see that fisher IPM corresponds to the worst case distance between whitened means.
Since the means are white, we don’t need to impose further constraints on ! as in [6, 8]. Another
interpretation of the Fisher IPM stems from the fact that:

dF
v,!

(P, Q) = max

!

q

(µ
!

(P)� µ
!

(Q))

>
⌃

�1

!

(P; Q)(µ
!

(P)� µ
!

(Q)),

from which we see that Fisher IPM is a Mahalanobis distance between the mean feature embeddings
of the distributions. The Mahalanobis distance is defined by the positive definite matrix ⌃

w

(P; Q).
We show in Appendix A that the gradient penalty in Improved Wasserstein [7] gives rise to a similar
Mahalanobis mean matching interpretation.

Learning GAN with Fisher IPM. Hence we see that learning GAN with Fisher IPM:
min

g

✓

max

!

max

v,v

>
(

1

2

⌃

!

(P
r

)+

1

2

⌃

!

(P
✓

)+�I

m

)v=1

hv, µ
w

(P
r

)� µ
!

(P
✓

)i

corresponds to a min-max game between a feature space and a generator. The feature space tries
to maximize the Mahalanobis distance between the feature means embeddings of real and fake
distributions. The generator tries to minimize the mean embedding distance.

3 Theory
We will start first by studying the Fisher IPM defined in Equation (2) when the function space has full
capacity i.e when the critic belongs to L

2

(X , 1

2

(P+Q)) meaning that
R

X f2

(x)

(P(x)+Q(x))

2

dx <1.
Theorem 1 shows that under this condition, the Fisher IPM corresponds to the Chi-squared distance
between distributions, and gives a closed form expression of the optimal critic function f

�

(See
Appendix B for its relation with the Pearson Divergence). Proofs are given in Appendix D.
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Figure 2: Example on 2D synthetic data, where both P and Q are fixed normal distributions with the
same covariance and shifted means along the x-axis, see (a). Fig (b, c) show the exact �

2

distance
from numerically integrating Eq (8), together with the estimate obtained from training a 5-layer MLP
with layer size = 16 and LeakyReLU nonlinearity on different training sample sizes. The MLP is
trained using Algorithm 1, where sampling from the generator is replaced by sampling from Q, and
the �

2

MLP estimate is computed with Equation (2) on a large number of samples (i.e. out of sample
estimate). We see in (b) that for large enough sample size, the MLP estimate is extremely good. In (c)
we see that for smaller sample sizes, the MLP approximation bounds the ground truth �

2

from below
(see Theorem 2) and converges to the ground truth roughly as O(

1p
N

) (Theorem 3). We notice that
when the distributions have small �

2

distance, a larger training size is needed to get a better estimate -
again this is in line with Theorem 3.

Theorem 1 (Chi-squared distance at full capacity). Consider the Fisher IPM for F being the space
of all measurable functions endowed by 1

2

(P + Q), i.e. F := L
2

(X , P+Q
2

). Define the Chi-squared
distance between two distributions:

�
2

(P, Q) =

s

Z

X

(P(x)�Q(x))

2

P(x)+Q(x)

2

dx (8)

The following holds true for any P, Q, P 6= Q:

1) The Fisher IPM for F = L
2

(X , P+Q
2

) is equal to the Chi-squared distance defined above:
dF (P, Q) = �

2

(P, Q).

2) The optimal critic of the Fisher IPM on L
2

(X , P+Q
2

) is :

f
�

(x) =

1

�
2

(P, Q)

P(x)�Q(x)

P(x)+Q(x)

2

.

We note here that LSGAN [5] at full capacity corresponds to a Chi-Squared divergence, with the
main difference that LSGAN has different objectives for the generator and the discriminator (bilevel
optimizaton), and hence does not optimize a single objective that is a distance between distributions.
The Chi-squared divergence can also be achieved in the f -gan framework from [3]. We discuss the
advantages of the Fisher formulation in Appendix C.

Optimizing over L
2

(X , P+Q
2

) is not tractable, hence we have to restrict our function class, to a
hypothesis class H , that enables tractable computations. Here are some typical choices of the space
H : Linear functions in the input features, RKHS, a non linear multilayer neural network with a
linear last layer (F

v,!

). In this Section we don’t make any assumptions about the function space and
show in Theorem 2 how the Chi-squared distance is approximated in H , and how this depends on
the approximation error of the optimal critic f

�

in H .
Theorem 2 (Approximating Chi-squared distance in an arbitrary function space H ). Let H
be an arbitrary symmetric function space. We define the inner product hf, f

�

iL
2

(X ,

P+Q
2

)

=

R

X f(x)f
�

(x)

P(x)+Q(x)

2

dx, which induces the Lebesgue norm. Let SL
2

(X ,

P+Q
2

)

be the unit sphere

in L
2

(X , P+Q
2

): SL
2

(X ,

P+Q
2

)

= {f : X ! R, kfkL
2

(X ,

P+Q
2

)

= 1}. The fisher IPM defined on an
arbitrary function space H dH (P, Q), approximates the Chi-squared distance. The approximation
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quality depends on the cosine of the approximation of the optimal critic f
�

in H . Since H is
symmetric this cosine is always positive (otherwise the same equality holds with an absolute value)

dH (P, Q) = �
2

(P, Q) sup

f2H \ S
L

2

(X ,

P+Q
2

)

hf, f
�

iL
2

(X ,

P+Q
2

)

,

Equivalently we have following relative approximation error:

�
2

(P, Q)� dH (P, Q)

�
2

(P, Q)

=

1

2

inf

f2H \ S
L

2

(X ,

P+Q
2

)

kf � f
�

k2L
2

(X ,

P+Q
2

)

.

From Theorem 2, we know that we have always dH (P, Q)  �
2

(P, Q). Moreover if the space
H was rich enough to provide a good approximation of the optimal critic f

�

, then dH is a good
approximation of the Chi-squared distance �

2

.

Generalization bounds for the sample quality of the estimated Fisher IPM from samples from P and
Q can be done akin to [11], with the main difficulty that for Fisher IPM we have to bound the excess
risk of a cost function with data dependent constraints on the function class. We give generalization
bounds for learning the Fisher IPM in the supplementary material (Theorem 3, Appendix E). In a
nutshell the generalization error of the critic learned in a hypothesis class H from samples of P and
Q, decomposes to the approximation error from Theorem 2 and a statistical error that is bounded
using data dependent local Rademacher complexities [17] and scales like O(

p

1/n), n =

MN/M+N .
We illustrate in Figure 2 our main theoretical claims on a toy problem.

4 Fisher GAN Algorithm using ALM

For any choice of the parametric function class F
p

(for example F
v,!

), note the constraint in Equation
(4) by ˆ

⌦(f
p

, g
✓

) =

1

2N

P

N

i=1

f2

p

(x
i

) +

1

2N

P

N

j=1

f2

p

(g
✓

(z
j

)). Define the Augmented Lagrangian
[18] corresponding to Fisher GAN objective and constraint given in Equation (4):

L
F

(p, ✓, �) =

ˆE (f
p

, g
✓

) + �(1� ˆ

⌦(f
p

, g
✓

))� ⇢

2

(

ˆ

⌦(f
p

, g
✓

)� 1)

2 (9)

where � is the Lagrange multiplier and ⇢ > 0 is the quadratic penalty weight. We alternate between
optimizing the critic and the generator. Similarly to [7] we impose the constraint when training the
critic only. Given ✓, for training the critic we solve max

p

min

�

L
F

(p, ✓, �). Then given the critic
parameters p we optimize the generator weights ✓ to minimize the objective min

✓

ˆE (f
p

, g
✓

). We
give in Algorithm 1, an algorithm for Fisher GAN, note that we use ADAM [19] for optimizing the
parameters of the critic and the generator. We use SGD for the Lagrange multiplier with learning rate
⇢ following practices in Augmented Lagrangian [18].

Algorithm 1 Fisher GAN
Input: ⇢ penalty weight, ⌘ Learning rate, n

c

number of iterations for training the critic, N batch
size
Initialize p, ✓, � = 0

repeat
for j = 1 to n

c

do
Sample a minibatch x

i

, i = 1 . . . N, x
i

⇠ P
r

Sample a minibatch z
i

, i = 1 . . . N, z
i

⇠ p
z

(g
p

, g
�

) (r
p

L
F

,r
�

L
F

)(p, ✓, �)

p p + ⌘ ADAM (p, g
p

)

� �� ⇢g
�

{SGD rule on � with learning rate ⇢}
end for
Sample z

i

, i = 1 . . . N, z
i

⇠ p
z

d
✓

 r
✓

ˆE (f
p

, g
✓

) = �r
✓

1

N

P

N

i=1

f
p

(g
✓

(z
i

))

✓  ✓ � ⌘ ADAM (✓, d
✓

)

until ✓ converges
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Figure 3: Samples and plots of the loss ˆE (.), lagrange multiplier �, and constraint ˆ

⌦(.) on 3
benchmark datasets. We see that during training as � grows slowly, the constraint becomes tight.

Figure 4: No Batch Norm: Training results from a critic f without batch normalization. Fisher GAN
(left) produces decent samples, while WGAN with weight clipping (right) does not. We hypothesize
that this is due to the implicit whitening that Fisher GAN provides. (Note that WGAN-GP does also
succesfully converge without BN [7]). For both models the learning rate was appropriately reduced.

5 Experiments

We experimentally validate the proposed Fisher GAN. We claim three main results: (1) stable training
with a meaningful and stable loss going down as training progresses and correlating with sample
quality, similar to [6, 7]. (2) very fast convergence to good sample quality as measured by inception
score. (3) competitive semi-supervised learning performance, on par with literature baselines, without
requiring normalization of the critic.

We report results on three benchmark datasets: CIFAR-10 [20], LSUN [21] and CelebA [22]. We
parametrize the generator g

✓

and critic f with convolutional neural networks following the model
design from DCGAN [23]. For 64⇥ 64 images (LSUN, CelebA) we use the model architecture in
Appendix F.2, for CIFAR-10 we train at a 32⇥ 32 resolution using architecture in F.3 for experiments
regarding sample quality (inception score), while for semi-supervised learning we use a better
regularized discriminator similar to the Openai [9] and ALI [24] architectures, as given in F.4.We
used Adam [19] as optimizer for all our experiments, hyper-parameters given in Appendix F.

Qualitative: Loss stability and sample quality. Figure 3 shows samples and plots during training.
For LSUN we use a higher number of D updates (n

c

= 5) , since we see similarly to WGAN that
the loss shows large fluctuations with lower n

c

values. For CIFAR-10 and CelebA we use reduced
n

c

= 2 with no negative impact on loss stability. CIFAR-10 here was trained without any label
information. We show both train and validation loss on LSUN and CIFAR-10 showing, as can be
expected, no overfitting on the large LSUN dataset and some overfitting on the small CIFAR-10
dataset. To back up our claim that Fisher GAN provides stable training, we trained both a Fisher Gan
and WGAN where the batch normalization in the critic f was removed (Figure 4).

Quantitative analysis: Inception Score and Speed. It is agreed upon that evaluating generative
models is hard [25]. We follow the literature in using “inception score” [9] as a metric for the quality
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Figure 5: CIFAR-10 inception scores under 3 training conditions. Corresponding samples are given
in rows from top to bottom (a,b,c). The inception score plots are mirroring Figure 3 from [7].
Note All inception scores are computed from the same tensorflow codebase, using the architecture
described in appendix F.3, and with weight initialization from a normal distribution with stdev=0.02.
In Appendix F.1 we show that these choices are also benefiting our WGAN-GP baseline.

of CIFAR-10 samples. Figure 5 shows the inception score as a function of number of g
✓

updates
and wallclock time. All timings are obtained by running on a single K40 GPU on the same cluster.
We see from Figure 5, that Fisher GAN both produces better inception scores, and has a clear speed
advantage over WGAN-GP.

Quantitative analysis: SSL. One of the main premises of unsupervised learning, is to learn features
on a large corpus of unlabeled data in an unsupervised fashion, which are then transferable to other
tasks. This provides a proper framework to measure the performance of our algorithm. This leads
us to quantify the performance of Fisher GAN by semi-supervised learning (SSL) experiments on
CIFAR-10. We do joint supervised and unsupervised training on CIFAR-10, by adding a cross-entropy
term to the IPM objective, in conditional and unconditional generation.

Table 2: CIFAR-10 inception scores using resnet architecture and codebase from [7]. We used
Layer Normalization [26] which outperformed unnormalized resnets. Apart from this, no additional
hyperparameter tuning was done to get stable training of the resnets.

Method Score

ALI [24] 5.34 ± .05

BEGAN [27] 5.62

DCGAN [23] (in [28]) 6.16 ± .07

Improved GAN (-L+HA) [9] 6.86 ± .06

EGAN-Ent-VI [29] 7.07 ± .10

DFM [30] 7.72 ± .13

WGAN-GP ResNet [7] 7.86 ± .07

Fisher GAN ResNet (ours) 7.90 ± .05

Unsupervised

Method Score

SteinGan [31] 6.35

DCGAN (with labels, in [31]) 6.58

Improved GAN [9] 8.09 ± .07

Fisher GAN ResNet (ours) 8.16 ± .12

AC-GAN [32] 8.25 ± .07

SGAN-no-joint [28] 8.37 ± .08

WGAN-GP ResNet [7] 8.42 ± .10

SGAN [28] 8.59 ± .12

Supervised

Unconditional Generation with CE Regularization. We parametrize the critic f as in F
v,!

.
While training the critic using the Fisher GAN objective L

F

given in Equation (9), we train a linear
classifier on the feature space �

!

of the critic, whenever labels are available (K labels). The linear
classifier is trained with Cross-Entropy (CE) minimization. Then the critic loss becomes L

D

=

L
F

� �
D

P

(x,y)2lab CE(x, y; S, �
!

), where CE(x, y; S, �
!

) = � log [Softmax(hS, �
!

(x)i)
y

],
where S 2 RK⇥m is the linear classifier and hS, �

!

i 2 RK with slight abuse of notation. �
D

is the
regularization hyper-parameter. We now sample three minibatches for each critic update: one labeled
batch from the small labeled dataset for the CE term, and an unlabeled batch + generated batch for
the IPM.

Conditional Generation with CE Regularization. We also trained conditional generator models,
conditioning the generator on y by concatenating the input noise with a 1-of-K embedding of the
label: we now have g

✓

(z, y). We parametrize the critic in F
v,!

and modify the critic objective
as above. We also add a cross-entropy term for the generator to minimize during its training step:
L

G

=

ˆE +�
G

P

z⇠p(z),y⇠p(y)

CE(g
✓

(z, y), y; S, �
!

). For generator updates we still need to sample
only a single minibatch since we use the minibatch of samples from g

✓

(z, y) to compute both the
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IPM loss ˆE and CE. The labels are sampled according to the prior y ⇠ p(y), which defaults to the
discrete uniform prior when there is no class imbalance. We found �

D

= �
G

= 0.1 to be optimal.

New Parametrization of the Critic: “K + 1 SSL”. One specific successful formulation of SSL in
the standard GAN framework was provided in [9], where the discriminator classifies samples into
K + 1 categories: the K correct clases, and K + 1 for fake samples. Intuitively this puts the real
classes in competition with the fake class. In order to implement this idea in the Fisher framework,
we define a new function class of the critic that puts in competition the K class directions of the
classifier S

y

, and another “K+1” direction v that indicates fake samples. Hence we propose the
following parametrization for the critic: f(x) =

P

K

y=1

p(y|x) hS
y

, �
!

(x)i � hv, �
!

(x)i, where
p(y|x) = Softmax(hS, �

!

(x)i)
y

which is also optimized with Cross-Entropy. Note that this critic
does not fall under the interpretation with whitened means from Section 2.2, but does fall under
the general Fisher IPM framework from Section 2.1. We can use this critic with both conditional
and unconditional generation in the same way as described above. In this setting we found �

D

=

1.5, �
G

= 0.1 to be optimal.

Layerwise normalization on the critic. For most GAN formulations following DCGAN design
principles, batch normalization (BN) [33] in the critic is an essential ingredient. From our semi-
supervised learning experiments however, it appears that batch normalization gives substantially
worse performance than layer normalization (LN) [26] or even no layerwise normalization. We
attribute this to the implicit whitening Fisher GAN provides.

Table 3 shows the SSL results on CIFAR-10. We show that Fisher GAN has competitive results, on
par with state of the art literature baselines. When comparing to WGAN with weight clipping, it
becomes clear that we recover the lost SSL performance. Results with the K + 1 critic are better
across the board, proving consistently the advantage of our proposed K + 1 formulation. Conditional
generation does not provide gains in the setting with layer normalization or without normalization.

Table 3: CIFAR-10 SSL results.
Number of labeled examples 1000 2000 4000 8000
Model Misclassification rate

CatGAN [34] 19.58

Improved GAN (FM) [9] 21.83 ± 2.01 19.61 ± 2.09 18.63 ± 2.32 17.72 ± 1.82

ALI [24] 19.98 ± 0.89 19.09 ± 0.44 17.99 ± 1.62 17.05 ± 1.49

WGAN (weight clipping) Uncond 69.01 56.48 40.85 30.56
WGAN (weight clipping) Cond 68.11 58.59 42.00 30.91

Fisher GAN BN Cond 36.37 32.03 27.42 22.85

Fisher GAN BN Uncond 36.42 33.49 27.36 22.82

Fisher GAN BN K+1 Cond 34.94 28.04 23.85 20.75

Fisher GAN BN K+1 Uncond 33.49 28.60 24.19 21.59

Fisher GAN LN Cond 26.78 ± 1.04 23.30 ± 0.39 20.56 ± 0.64 18.26 ± 0.25

Fisher GAN LN Uncond 24.39 ± 1.22 22.69 ± 1.27 19.53 ± 0.34 17.84 ± 0.15

Fisher GAN LN K+1 Cond 20.99 ± 0.66 19.01 ± 0.21 17.41 ± 0.38 15.50 ± 0.41

Fisher GAN LN K+1, Uncond 19.74 ± 0.21 17.87 ± 0.38 16.13 ± 0.53 14.81 ± 0.16

Fisher GAN No Norm K+1, Uncond 21.15 ± 0.54 18.21 ± 0.30 16.74 ± 0.19 14.80 ± 0.15

6 Conclusion

We have defined Fisher GAN, which provide a stable and fast way of training GANs. The Fisher
GAN is based on a scale invariant IPM, by constraining the second order moments of the critic. We
provide an interpretation as whitened (Mahalanobis) mean feature matching and �

2

distance. We
show graceful theoretical and empirical advantages of our proposed Fisher GAN.

Acknowledgments. The authors thank Steven J. Rennie for many helpful discussions and Martin
Arjovsky for helpful clarifications and pointers.
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