NIPS Proceedingsβ

Fitting Low-Rank Tensors in Constant Time

Part of: Advances in Neural Information Processing Systems 30 (NIPS 2017) pre-proceedings

Pre-Proceedings

[PDF] [BibTeX] [Supplemental] [Reviews]

Authors

Conference Event Type: Poster

Abstract

In this paper, we develop an algorithm that approximates the residual error of Tucker decomposition, one of the most popular tensor decomposition methods, with a provable guarantee. Given an order-$K$ tensor $X\in\mathbb{R}^{N_1\times\cdots\times N_K}$, our algorithm randomly samples a constant number $s$ of indices for each mode and creates a ``mini'' tensor $\tilde{X}\in\mathbb{R}^{s\times\cdots\times s}$, whose elements are given by the intersection of the sampled indices on $X$. Then, we show that the residual error of the Tucker decomposition of $\tilde{X}$ is sufficiently close to that of $X$ with high probability. This result implies that we can figure out how much we can fit a low-rank tensor to $X$ \emph{in constant time}, regardless of the size of $X$. This is useful for guessing the favorable rank of Tucker decomposition. Finally, we demonstrate how the sampling method works quickly and accurately using multiple real datasets.