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Abstract

As datasets grow richer, an important challenge is to leverage the full features
in the data to maximize the number of useful discoveries while controlling for
false positives. We address this problem in the context of multiple hypotheses
testing, where for each hypothesis, we observe a p-value along with a set of
features specific to that hypothesis. For example, in genetic association studies,
each hypothesis tests the correlation between a variant and the trait. We have a
rich set of features for each variant (e.g. its location, conservation, epigenetics etc.)
which could inform how likely the variant is to have a true association. However
popular empirically-validated testing approaches, such as Benjamini-Hochberg’s
procedure (BH) and independent hypothesis weighting (IHW), either ignore these
features or assume that the features are categorical or uni-variate. We propose a
new algorithm, NeuralFDR, which automatically learns a discovery threshold as a
function of all the hypothesis features. We parametrize the discovery threshold as
a neural network, which enables flexible handling of multi-dimensional discrete
and continuous features as well as efficient end-to-end optimization. We prove
that NeuralFDR has strong false discovery rate (FDR) guarantees, and show that it
makes substantially more discoveries in synthetic and real datasets. Moreover, we
demonstrate that the learned discovery threshold is directly interpretable.

1 Introduction

In modern data science, the analyst is often swarmed with a large number of hypotheses — e.g. is a
mutation associated with a certain trait or is this ad effective for that section of the users. Deciding
which hypothesis to statistically accept or reject is a ubiquitous task. In standard multiple hypothesis
testing, each hypothesis is boiled down to one number, a p-value computed against some null
distribution, with a smaller value indicating less likely to be null. We have powerful procedures to
systematically reject hypotheses while controlling the false discovery rate (FDR) Note that here the
convention is that a “discovery” corresponds to a “rejected” null hypothesis.

These FDR procedures are widely used but they ignore additional information that is often available
in modern applications. Each hypothesis, in addition to the p-value, could also contain a set of
features pertinent to the objects being tested in the hypothesis. In the genetic association setting
above, each hypothesis tests whether a mutation is correlated with the trait and we have a p-value
for this. Moreover, we also have other features about both the mutation (e.g. its location, epigenetic
status, conservation etc.) and the trait (e.g. if the trait is gene expression then we have features on the
gene). Together these form a feature representation of the hypothesis. This feature vector is ignored
by the standard multiple hypotheses testing procedures.

In this paper, we present a flexible method using neural networks to learn a nonlinear mapping
from hypothesis features to a discovery threshold. Popular procedures for multiple hypotheses
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Figure 1: NeuralFDR: an end-to-end learning procedure.

testing correspond to having one constant threshold for all the hypotheses (BH [3]), or a constant
for each group of hypotheses (group BH [[13], IHW [[14} [15]). Our algorithm takes account of all
the features to automatically learn different thresholds for different hypotheses. Our deep learning
architecture enables efficient optimization and gracefully handles both continuous and discrete multi-
dimensional hypothesis features. Our theoretical analysis shows that we can control false discovery
proportion (FDP) with high probability. We provide extensive simulation on synthetic and real
datasets to demonstrate that our algorithm makes more discoveries while controlling FDR compared
to state-of-the-art methods.

Contribution. As shown in Fig. [1, we provide NeuralFDR, a practical end-to-end algorithm
to the multiple hypotheses testing problem where the hypothesis features can be continuous and
multi-dimensional. In contrast, the currently widely-used algorithms either ignore the hypothesis
features (BH [3]], Storey’s BH [21])) or are designed for simple discrete features (group BH [13],
IHW [15]). Our algorithm has several innovative features. We learn a multi-layer perceptron as
the discovery threshold and use a mirroring technique to robustly estimate false discoveries. We
show that NeuralFDR controls false discovery with high probability for independent hypotheses
and asymptotically under weak dependence [13|121]], and we demonstrate on both synthetic and real
datasets that it controls FDR while making substantially more discoveries. Another advantage of
our end-to-end approach is that the learned discovery threshold are directly interpretable. We will
illustrate in Sec. [4|how the threshold conveys biological insights.

Related works. Holm [[12] investigated the use of p-value weights, where a larger weight suggests
that the hypothesis is more likely to be an alternative. Benjamini and Hochberg [4] considered
assigning different losses to different hypotheses according to their importance. Some more recent
works are [9}[10, [13]]. In these works, the features are assumed to have some specific forms, either
prespecified weights for each hypothesis or the grouping information. The more general formulation
considered in this paper was purposed quite recently [15} [16} [18, [19]. It assumes that for each
hypothesis, we observe not only a p-value P; but also a feature X; lying in some generic space
X. The feature is meant to capture some side information that might bear on the likelihood of
a hypothesis to be significant, or on the power of P; under the alternative, but the nature of this
relationship is not fully known ahead of time and must be learned from the data.

The recent work most relevant to ours is IHW [15]. In IHW, the data is grouped into G groups based
on the features and the decision threshold is a constant for each group. IHW is similar to NeuralFDR
in that both methods optimize the parameters of the decision rule to increase the number of discoveries
while using cross validation for asymptotic FDR control. IHW has several limitations: first, binning
the data into G groups can be difficult if the feature space X’ is multi-dimensional; second, the
decision rule, restricted to be a constant for each group, is artificial for continuous features; and third,
the asymptotic FDR control guarantee requires the number of groups going to infinity, which can
be unrealistic. In contrast, NeuralFDR uses a neural network to parametrize the decision rule which
is much more general and fits the continuous features. As demonstrated in the empirical results, it
works well with multi-dimensional features. In addition to asymptotic FDR control, NeuralFDR also
has high-probability false discovery proportion control guarantee with a finite number of hypotheses.

SABHA [19] and AdaPT [16] are two recent FDR control frameworks that allow flexible methods to
explore the data and compute the feature dependent decision rules. The focus there is the framework
rather than the end-to-end algorithm as compared to NueralFDR. For the empirical experiment,
SABHA estimates the null proportion using non-parametric methods while AdaPT estimates the



distribution of the p-value and the features with a two-group Gamma GLM mixture model and
spline regression. The multi-dimensional case is discussed without empirical validation. Hence
both methods have a similar limitation to IHW in that they do not provide an empirically validated
end-to-end approach for multi-dimensional features. This issue is addressed in [S]], where the null
proportion is modeled as a linear combination of some hand-crafted transformation of the features.
NeuralFDR models this relation in a more flexible way.

2 Preliminaries

We have n hypotheses and each hypothesis 4 is characterized by a tuple (P;, X;, H;), where P; €
(0,1) is the p-value, X; € X is the hypothesis feature, and H; € {0, 1} indicates if this hypothesis
is null ( H; = 0) or alternative ( H; = 1). The p-value P; represents the probability of observing
an equally or more extreme value compared to the testing statistic when the hypothesis is null, and
is calculated based on some data different from X,. The alternate hypotheses (H; = 1) are the
true signals that we would like to discover. A smaller p-value presents stronger evidence for a
hypothesis to be alternative. In practice, we observe P; and X; but do not know H;. We define
the null proportion 7 (x) to be the probability that the hypothesis is null conditional on the feature
X,; = x. The standard assumption is that under the null (H; = 0), the p-value is uniformly distributed
in (0,1). Under the alternative (H; = 1), we denote the p-value distribution by f1(p|x). In most
applications, the p-values under the alternative are systematically smaller than those under the null. A
detailed discussion of the assumptions can be found in Sec. [3]

The general goal of multiple hypotheses testing is to claim a maximum number of discoveries based
on the observations {(P;, X;)}"_, while controlling the false positives. The most popular quantities
that conceptualize the false positives are the family-wise error rate (FWER) [8]] and the false discovery
rate (FDR) [3]]. We specifically consider FDR in this paper. FDR is the expected proportion of false
discoveries, and one closely related quantity, the false discovery proportion (FDP), is the actual
proportion of false discoveries. We note that FDP is the actual realization of FDR. Formally,

Definition 1. (FDP and FDR) For any decision rule t, let D(t) and FD(t) be the number of
discoveries and the number of false discoveries. The false discovery proportion F'DP(t) and the

false discovery rate FDR(t) are defined as FDP(t) = FD(t)/D(t) and FDR(t) = E[FDP(t)).

In this paper, we aim to maximize D(t) while controlling F'D P(t) < « with high probability. This
is a stronger statement than those in FDR control literature of controlling FDR under the level a.

Motivating example. Consider a genetic association study where the genotype and phenotype (e.g.
height) are measured in a population. Hypothesis ¢ corresponds to testing the correlation between the
variant 7 and the individual’s height. The null hypothesis is that there is no correlation, and P; is the
probability of observing equally or more extreme values than the empirically observed correlation
conditional on the hypothesis is null H; = 0. Small P; indicates that the null is unlikely. Here H; =1
(or 0) corresponds to the variant truly is (or is not) associated with height. The features X; could
include the location, conservation, etc. of the variant. Note that X, is not used to compute P;, but it
could contain information about how likely the hypotheses is to be an alternative. Careful readers
may notice that the distribution of P; given X, is uniform between 0 and 1 under the null and f; (p|x)
under the alternative, which depends on x. This implies that P; and X; are independent under
the null and dependent under the alternative.

To illustrate why modeling the features could improve discovery power, suppose hypothetically that
all the variants truly associated with height reside on a single chromosome ;* and the feature is
the chromosome index of each SNP (see Fig. E (a)). Standard multiple testing methods ignore this
feature and assign the same discovery threshold to all the chromosomes. As there are many purely
noisy chromosomes, the p-value threshold must be very small in order to control FDR. In contrast, a
method that learns the threshold ¢(x) could learn to assign a higher threshold to chromosome j* and
0 to other chromosomes. As a higher threshold leads to more discoveries and vice versa, this would
effectively ignore much of the noise and make more discoveries under the same FDR.

3 Algorithm Description

Since a smaller p-value presents stronger evidence against the null hypothesis, we consider the
threshold decision rule without loss of generality. As the null proportion 7((x) and the alternative
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Figure 2: (a) Hypothetical example where small p-values are enriched at chromosome j*. (b) The
mirroring estimator. (c) The training and cross validation procedure.

distribution f; (p|x) vary with x, the threshold should also depend on x. Therefore, we can write
the rule as ¢(x) in general, which claims hypothesis i to be significant if P; < ¢(X;). Let I be the
indicator function. For ¢(x), the number of discoveries D(t) and the number of false discoveries
FD(t) can be expressed as D(t) = > Iyp,<yx,yy and FD(t) = > Iip,<t(x,),H,=0} - Note
that computing F'D(t) requires the knowledge of H;, which is not available from the observations.
Ideally we want to solve ¢ for the following problem:

maximize, D(t), s.t. FDP(t) < a. (D

Directly solving (1)) is not possible. First, without a parametric representation, ¢ can not be optimized.
Second, while D(t) can be calculated from the data, F'D(t) can not, which is needed for evaluating
FDP(t). Third, while each decision rule candidate ¢, controls FDP, optimizing over them may yield
a rule that overfits the data and loses FDP control. We next address these three difficulties in order.

First, the representation of the decision rule ¢(x) should be flexible enough to address different
structures of the data. Intuitively, to have maximal discoveries, the landscape of ¢(x) should be similar
to that of the alternative proportion 71 (x): ¢(x) is large in places where the alternative hypotheses
abound. As discussed in detail in Sec. é, two structures of 71 (x) are typical in practice. The first is
bumps at a few locations, and the second is slopes that vary with x. Hence the representation should
at least be able to address these two structures. In addition, the number of parameters needed for the
representation should not grow exponentially with the dimensionality of x. Hence non-parametric
models, such as the spline-based methods or the kernel based methods, are infeasible. Take kernel
density estimation in 5D as example. If we let the kernel width be 0.1, each kernel contains on
average 0.001% of the data. Then we need at least a million alternative hypothesis data to have a
reasonable estimate of the landscape of 71 (x). In this work, we investigate the idea of modeling
t(x) using a multilayer perceptron (MLP), which has a high expressive power and has a number of
parameters that does not grow exponentially with the dimensionality of the features. As demonstrated
in Sec. [] it can efficiently recover the two common structures, bumps and slopes, and yield promising
results in all real data experiments.

Second, although F'D(¢) can not be calculated from the data, if it can be overestimated by some
FD(t), then the corresponding estimate of FDP, namely FDP(t) = FD(t)/D(t), is also an
overestimate. Then if FDP(t) < «, then FDP(t) < «, yielding the desired FDP control. Moreover,
if F'D(t) is close to F'D(t), the FDP control is tight. Conditional on X = x, the rejection region of
p, namely (0, ¢(x)), contains a mixture of nulls and alternatives. As the null distribution Unif(0, 1)
is symmetrical w.r.t. p = 0.5 while the alternative distribution f (p|x) is highly asymmetrical, the
mirrored region (1 — ¢(x), 1) will contain roughly the same number of nulls but very few alternatives.
Then the number of hypothesis in (£(x), 1) can be a proxy of the number of nulls in (0, £(x)). This
idea is illustrated in Fig. [2](b) and we refer to this estimator as the mirroring estimator. This estimator
is also used in [1} 16} [17].

Definition 2. (The mirroring estimator) For any decision rule t, let C(t) = {(p,x) : p < t(x)} be the
rejection region of t over (P;, X;) and let its mirrored region be C™ (t) = {(p,x) : p > 1—t(x)}.The
mirroring estimator of F'D(t) is defined as FD(t) = Y, Iy (p, x,)ec™ 1)}

The mirroring estimator overestimates the number of false discoveries in expectation:



Lemma 1. (Positive bias of the mirroring estimator)

BIFD(H] - EFD(H] = 3P [(P X,) € O (1), By =1] 0. @

i=1

Remark 1. In practice, t(x) is always very small and f1(p|x) approaches 0 very fast as p — 1.
Then for any hypothesis with (P;, X;) € CM(t), P; is very close to 1 and hence P(H; = 1) is very
small. In other words, the bias in (2) is much smaller than E[F D(t)]. Thus the estimator is accurate.
In addition, F D(t) and F D(t) are both sums of n terms. Under mild conditions, they concentrate

well around their means. Thus we should expect that F‘B(t) approximates F D(t) well most of the
times. We make this precise in Sec. |5|in the form of the high probability FDP control statement.

Third, we use cross validation to address the overfitting problem introduced by optimization. To
be more specific, we divide the data into M folds. For fold j, the decision rule ¢;(x; ), before
applied on fold j, is trained and cross validated on the rest of the data. The cross validation is done by

rescaling the learned threshold ¢;(x) by a factor +; so that the corresponding mirror estimate F'DP
on the CV set is . This will not introduce much of additional overfitting since we are only searching
over a scalar . The discoveries in all M folds are merged as the final result. We note here distinct
folds correspond to subsets of hypotheses rather than samples used to compute the corresponding
p-values. This procedure is shown in Fig. [2 (c). The details of the procedure as well as the FDP
control property are also presented in Sec.

Algorithm 1 NeuralFDR
1: Randomly divide the data {(P;, X;)}?_, into M folds.
2: forfoldj=1,---, M do
3: Let the testing data be fold j, the CV data be fold j’ # j, and the training data be the rest.
4: Train ¢;(x; 6) based on the training data by optimizing

maximizeg D(t(6)) s.t. FDP(t;(6)) < . 3)

5: Rescale 7 (x; @) by 7} so that the estimated FDP on the CV data Z~{D\P('yj>“zf;k (0)) = a.
6: Apply 777 () on the data in fold j (the testing data).
7: Report the discoveries in all M folds.

The proposed method NeuralFDR is summarized as Alg. [T. There are two techniques that enabled
robust training of the neural network. First, to have non-vanishing gradients, the indicator functions
in (3] are substituted by sigmoid functions with the intensity parameters automatically chosen based
on the dataset. Second, the training process of the neural network may be unstable if we use random
initialization. Hence, we use an initialization method called the k-cluster initialization: 1) use
k-means clustering to divide the data into k clusters based on the features; 2) compute the optimal
threshold for each cluster based on the optimal group threshold condition ({7) in Sec. [5); 3) initialize
the neural network by training it to fit a smoothed version of the computed thresholds. See Supp. Sec.
[2) for more implementation details.

4 Empirical Results

We evaluate our method using both simulated data and two real-world dataset The implementation
details are in Supp. Sec. [2. We compare NeuralFDR with three other methods: BH procedure
(BH) [3I], Storey’s BH procedure (SBH) with threshold A = 0.4 [21], and Independent Hypothesis
Weighting (IHW) with number of bins and folds set as default [15]. BH and SBH are two most
popular methods without using the hypothesis features and IHW is the state-of-the-art method that
utilizes hypothesis features. For IHW, in the multi-dimensional feature case, k-means is used to
group the hypotheses. In all experiments, k is set to 20 and the group index is provided to IHW as the
hypothesis feature. Other than the FDR control experiment, we set the nominal FDR level o = 0.1.

3We released the software at https://github.com/fxia22/NeuralFDR
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