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Abstract

Consider a dataset where data is collected on multiple features of multiple individu-
als over multiple times. This type of data can be represented as a three dimensional
individual/feature/time tensor and has become increasingly prominent in various
areas of science. The tensor biclustering problem computes a subset of individuals
and a subset of features whose signal trajectories over time lie in a low-dimensional
subspace, modeling similarity among the signal trajectories while allowing dif-
ferent scalings across different individuals or different features. We study the
information-theoretic limit of this problem under a generative model. Moreover,
we propose an efficient spectral algorithm to solve the tensor biclustering problem
and analyze its achievability bound in an asymptotic regime. Finally, we show the
efficiency of our proposed method in several synthetic and real datasets.

1 Introduction

Let T ∈ Rn1×n2 be a data matrix whose rows and columns represent individuals and features,
respectively. Given T, the matrix biclustering problem aims to find a subset of individuals (i.e.,
J1 ⊂ {1, 2, ..., n1}) which exhibit similar values across a subset of features (i.e., J2 ⊂ {1, 2, ..., n2})
(Figure 1-a). The matrix biclustering problem has been studied extensively in machine learning and
statistics and is closely related to problems of sub-matrix localization, planted clique and community
detection [1, 2, 3].

In modern datasets, however, instead of collecting data on every individual-feature pair at a single
time, we may collect data at multiple times. One can visualize a trajectory over time for each
individual-feature pair. This type of datasets has become increasingly prominent in different areas of
science. For example, the roadmap epigenomics dataset [4] provides multiple histon modification
marks for genome-tissue pairs, the genotype-tissue expression dataset [5] provides expression data
on multiple genes for individual-tissue pairs, while there have been recent efforts to collect various
omics data in individuals at different times [6].

Suppose we have n1 individuals, n2 features, and we collect data for every individual-feature pair
at m different times. This data can be represented as a three dimensional tensor T ∈ Rn1×n2×m

(Figure 1-b). The tensor biclustering problem aims to compute a subset of individuals and a subset
of features whose trajectories are highly similar. Similarity is modeled as the trajectories as lying
in a low-dimensional (say one-dimensional) subspace (Figure 1-d). This definition allows different
scalings across different individuals or different features, and is important in many applications
such as in omics datasets [6] because individual-feature trajectories often have their own intrinsic
scalings. In particular, at each time the individual-feature data matrix may not exhibit a matrix
bicluster separately. This means that repeated applications of matrix biclustering cannot solve the
tensor biclustering problem. Moreover, owing to the same reason, trajectories in a bicluster can
have large distances among themselves (Figure 1-d). Thus, a distance-based clustering of signal
trajectories is likely to fail as well.
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Figure 1: (a) The matrix biclustering problem. (b) The tensor biclustering problem. (c) The tensor
triclustering problem. (d) A visualization of a bicluster in a three dimensional tensor. Trajectories in
the bicluster (red points) form a low dimensional subspace.

This problem formulation has two main differences with tensor triclustering, which is a natural
generalization of matrix biclustering to a three dimensional tensor (Figure 1-c). Firstly, unlike tensor
triclustering, tensor biclustering has an asymmetric structure along tensor dimensions inspired by
aforementioned applications. That is, since a tensor bicluster is defined as a subset of individuals
and a subset of features with similar trajectories, the third dimension of the tensor (i.e., the time
dimension) plays a different role compared to the other two dimensions. This is in contrast with
tensor triclustering where there is not such a difference between roles of tensor dimensions in defining
the cluster. Secondly, in tensor biclustering, the notion of a cluster is defined regarding to trajectories
lying in a low-dimensional subspace while in tensor triclustering, a cluster is defined as a sub-cube
with similar entries.

Finding statistically significant patterns in multi-dimensional data tensors has been studied in di-
mensionality reduction [7, 8, 9, 10, 11, 12, 13, 14], topic modeling [15, 16, 17], among others. One
related model is the spiked tensor model [7]. Unlike the tensor biclustering model that is asymmetric
along tensor dimensions, the spiked tensor model has a symmetric structure. Computational and
statistical limits for the spiked tensor model have been studied in [8, 9, 10, 14], among others. For
more details, see Supplementary Materials (SM) Section 1.3.

In this paper, we study information-theoretic and computational limits for the tensor biclustering
problem under a statistical model described in Section 2. From a computational perspective, we
present four polynomial time methods and analyze their asymptotic achievability bounds. In particular,
one of our proposed methods, namely tensor folding+spectral, outperforms other methods both
theoretically (under realistic model parameters) and numerically in several synthetic and real data
experiments. Moreover, we characterize a fundamental limit under which no algorithm can solve the
tensor biclustering problem reliably in a minimax sense. We show that above this limit, a maximum
likelihood estimator (MLE) which has an exponential computational complexity can solve this
problem with vanishing error probability.

1.1 Notation

We use T , X , and Z to represent input, signal, and noise tensors, respectively. For any set J , |J |
denotes its cardinality. [n] represents the set {1, 2, ..., n}. J̄ = [n] − J . ‖x‖2 = (xtx)1/2 is the
second norm of the vector x. x⊗ y is the Kronecker product of two vectors x and y. The asymptotic
notation a(n) = O(b(n)) means that, there exists a universal constant c such that for sufficiently
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large n, we have |a(n)| < cb(n). If there exists c > 0 such that a(n) = O(b(n) log(n)c), we use
the notation a(n) = Õ(b(n)). The asymptotic notation a(n) = Ω(b(n)) and a(n) = Ω̃(b(n)) is the
same as b(n) = O(a(n)) and b(n) = Õ(a(n)), respectively. Moreover, we write a(n) = Θ(b(n))

iff a(n) = Ω(b(n)) and b(n) = Ω(a(n)). Similarly, we write a(n) = Θ̃(b(n)) iff a(n) = Ω̃(b(n))

and b(n) = Ω̃(a(n)).

2 Problem Formulation

Let T = X + Z where X is the signal tensor and Z is the noise tensor. Consider

T = X + Z =

q∑
r=1

σru
(J1)
r ⊗w(J2)

r ⊗ vr + Z, (1)

where u
(J1)
r and w

(J2)
r have zero entries outside of J1 and J2 index sets, respectively. We assume

σ1 ≥ σ2 ≥ ... ≥ σq > 0. Under this model, trajectories X (J1, J2, :) form an at most q dimensional
subspace. We assume q � min(m, |J1| × |J2|).
Definition 1 (Tensor Biclustering). The problem of tensor biclustering aims to compute bicluster
index sets (J1, J2) given T according to (1).

In this paper, we make the following simplifying assumptions: we assume q = 1, n = |n1| = |n2|,
and k = |J1| = |J2|. To simplify notation, we drop superscripts (J1) and (J2) from u

(J1)
1 and

w
(J2)
1 , respectively. Without loss of generality, we normalize signal vectors such that ‖u1‖ =
‖w1‖ = ‖v1‖ = 1. Moreover, we assume that for every (j1, j2) ∈ J1 × J2, ∆ ≤ u1(j1) ≤ c∆
and ∆ ≤ w1(j2) ≤ c∆, where c is a constant. Under these assumptions, a signal trajectory can be
written as X (j1, j2, :) = u1(j1)w1(j2)v1. The scaling of this trajectory depends on row and column
specific parameters u1(j1) and w1(j2). Note that our analysis can be extended naturally to a more
general setup of having multiple embedded biclusters with q > 1. We discuss this in Section 7.

Next we describe the noise model. If (j1, j2) /∈ J1×J2, we assume that entries of the noise trajectory
Z(j1, j2, :) are i.i.d. and each entry has a standard normal distribution. If (j1, j2) ∈ J1 × J2, we
assume that entries of Z(j1, j2, :) are i.i.d. and each entry has a Gaussian distribution with zero mean
and σ2

z variance. We analyze the tensor biclustering problem under two noise models for σ2
z :

- Noise Model I: In this model, we assume σ2
z = 1, i.e., the variance of the noise within and outside

of the bicluster is assumed to be the same. This is the noise model often considered in analysis
of sub-matrix localization [2, 3] and tensor PCA [7, 8, 9, 10, 11, 12, 14]. Although this model
simplifies the analysis, it has the following drawback: under this noise model, for every value
of σ1, the average trajectory lengths in the bicluster is larger than the average trajectory lengths
outside of the bicluster. See SM Section 1.2 for more details.

- Noise Model II: In this model, we assume σ2
z = max(0, 1− σ2

1

mk2 ), i.e., σ2
z is modeled to minimize

the difference between the average trajectory lengths within and outside of the bicluster. If
σ2
1 < mk2, noise is added to make the average trajectory lengths within and outside of the bicluster

comparable. See SM Section 1.2 for more details.

3 Computational Limits of the Tensor Biclustering Problem

3.1 Tensor Folding+Spectral

Recall the formulation of the tensor biclustering problem (1). Let

T(j1,1) , T (j1, :, :) and T(j2,2) , T (:, j2, :), (2)

be horizontal (the first mode) and lateral (the second mode) matrix slices of the tensor T , respectively.
One way to learn the embedded bicluster in the tensor is to compute row and column indices whose
trajectories are highly correlated with each other. To do that, we compute

C1 ,
n∑

j2=1

Tt
(j2,2)

T(j2,2) and C2 ,
n∑

j1=1

Tt
(j1,1)

T(j1,1). (3)
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Figure 2: A visualization of the tensor folding+spectral algorithm 1 to compute the bicluster index
set J2. The bicluster index set J1 can be computed similarly.

Algorithm 1 Tensor Folding+Spectral

Input: T , k
Compute û1, the top eigenvector of C1

Compute ŵ1, the top eigenvector of C2

Compute Ĵ1, indices of the k largest values of |ŵ1|
Compute Ĵ2, indices of the k largest values of |û1|
Output: Ĵ1 and Ĵ2

C1 represents a combined covariance matrix along the tensor columns (Figure 2). We refer to it as
the folded tensor over the columns. If there was no noise, this matrix would be equal to σ2

1u1u
t
1.

Thus, its eigenvector corresponding to the largest eigenvalue would be equal to u1. On the other
hand, we have u1(j1) = 0 if j1 /∈ J1 and |u1(j1)| > ∆, otherwise. Therefore, selecting k indices of
the top eigenvector with largest magnitudes would recover the index set J1. However, with added
noise, the top eigenvector of the folded tensor would be a perturbed version of u1. Nevertheless one
can estimate J1 similarly (Algorithm 1). A similar argument holds for C2.

Theorem 1. Let û1 and ŵ1 be top eigenvectors of C1 and C2, respectively. Under both noise models
I and II,

- for m < Õ(
√
n), if σ2

1 = Ω̃(n),

- for m = Ω̃(
√
n), if σ2

1 = Ω̃(
√
nmax(n,m)),

as n →∞, with high probability, we have |û1(j1)| > |û1(j′1)| and |ŵ1(j2)| > |ŵ1(j′2)| for every
j1 ∈ J1, j′1 ∈ J̄1, j2 ∈ J2 and j′2 ∈ J̄2.

In the proof of Theorem 1, following the result of [18] for a Wigner noise matrix, we have proved an
l∞ version of the Davis-Kahan Lemma for a Wishart noise matrix. This lemma can be of independent
interest for the readers.

3.2 Tensor Unfolding+Spectral

Let Tunfolded ∈ Rm×n2

be the unfolded tensor T such that Tunfolded(:, (j1 − 1)n + j2) =
T (j1, j2, :) for 1 ≤ j1, j2 ≤ n. Without noise, the right singular vector of this matrix is u1 ⊗w1

which corresponds to the singular value σ1. Therefore, selecting k2 indices of this singular vector
with largest magnitudes would recover the index set J1 × J2. With added noise, however, the top
singular vector of the unfolded tensor will be perturbed. Nevertheless one can estimate J1 × J2
similarly (SM Section 2).
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Theorem 2. Let x̂ be the top right singular vector of Tunfolded. Under both noise models I and II,
if σ2

1 = Ω̃(max(n2,m)), as n→∞, with high probability, we have |x̂(j′)| < |x̂(j)| for every j in
the bicluster and j′ outside of the bicluster.

3.3 Thresholding Sum of Squared and Individual Trajectory Lengths

If the average trajectory lengths in the bicluster is larger than the one outside of the bicluster, methods
based on trajectory length statistics can be successful in solving the tensor biclustering problem. One
such method is thresholding individual trajectory lengths. In this method, we select k2 indices (j1, j2)
with the largest trajectory length ‖T (j1, j2, :)‖ (SM Section 2).

Theorem 3. As n→∞, with high probability, Ĵ1 = J1 and Ĵ2 = J2

- if σ2
1 = Ω̃(

√
mk2), under noise model I.

- if σ2
1 = Ω̃(mk2), under noise model II.

Another method to solve the tensor biclustering problem is thresholding sum of squared trajectory
lengths. In this method, we select k row indices with the largest sum of squared trajectory lengths
along the columns as an estimation of J1. We estimate J2 similarly (SM Section 2).

Theorem 4. As n→∞, with high probability, Ĵ1 = J1 and Ĵ2 = J2

- if σ2
1 = Ω̃(k

√
nm), under noise model I.

- if σ2
1 = Ω̃(mk2 + k

√
nm), under noise model II.

4 Statistical (Information-Theoretic) Limits of the Tensor Biclustering
Problem

4.1 Coherent Case

In this section, we study a statistical (information theoretic) boundary for the tensor biclustering
problem under the following statistical model: We assume u1(j1) = 1/

√
k for j1 ∈ J1. Similarly,

we assume w1(j2) = 1/
√
k for j2 ∈ J2. Moreover, we assume v1 is a fixed given vector with

‖v1‖ = 1. In the next section, we consider a non-coherent model where v1 is random and unknown.

Let T be an observed tensor from the tensor biclustering model (J1, J2). Let Jall be the set of
all possible (J1, J2). Thus, |Jall| =

(
n
k

)2
. A maximum likelihood estimator (MLE) for the tensor

biclustering problem can be written as:

max
Ĵ∈Jall

vt1
∑

(j1,j2)∈Ĵ1×Ĵ2

T (j1, j2, :)−
k(1− σ2

z)

2σ1

∑
(j1,j2)∈Ĵ1×Ĵ2

‖T (j1, j2, :)‖2 (4)

(Ĵ1, Ĵ2) ∈ Jall.

Note that under the noise model I, the second term is zero. To solve this optimization, one needs
to compute the likelihood function for

(
n
k

)2
possible bicluster indices. Thus, the computational

complexity of the MLE is exponential in n.

Theorem 5. Under noise model I, if σ2
1 = Ω̃(k), as n → ∞, with high probability, (J1, J2) is

the optimal solution of optimization (4). A similar result holds under noise model II if mk =
Ω(log(n/k)).

Next, we establish an upper bound on σ2
1 under which no computational method can solve the tensor

biclustering problem with vanishing probability of error. This upper bound indeed matches with the
MLE achievability bound of Theorem 5 indicating its tightness.

Theorem 6. Let T be an observed tensor from the tensor biclustering model with bicluster indices
(J1, J2). Let A be an algorithm that uses T and computes (Ĵ1, Ĵ2). Under noise model I, for any
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fixed 0 < α < 1, if σ2
1 < cαk log(n/k), as n→∞, we have

inf
A∈AllAlg

sup
(J1,J2)∈Jall

P
[
Ĵ1 6= J1 or Ĵ2 6= J2

]
> 1− α− log(2)

2k log(ne/k)
. (5)

A similar result holds under noise model II if mk = Ω(log(n/k)).

4.2 Non-coherent Case

In this section we consider a similar setup to the one of Section 4.1 with the difference that v1 is
assumed to be uniformly distributed over a unit sphere. For simplicity, in this section we only consider
noise model I. The ML optimization in this setup can be written as follows:

max
Ĵ∈Jall

‖
∑

(j1,j2)∈Ĵ1×Ĵ2

T (j1, j2, :)‖2 (6)

(Ĵ1, Ĵ2) ∈ Jall.

Theorem 7. Under noise model I, if σ2
1 = Ω̃(max(k,

√
km)), as n → ∞, with high probability,

(J1, J2) is the optimal solution of optimization (6).

If k > Ω(m), the achievability bound of Theorem 7 simplifies to the one of Theorem 5. In this case,
using the result of Theorem 6, this bound is tight. If k < O(m), the achievability bound of Theorem
7 simplifies to Ω̃(

√
mk) which is larger than the one of Theorem 5 (this is the price we pay for not

knowing v1). In the following, we show that this bound is also tight.

To show the converse of Theorem 7, we consider the detection task which is presumably easier than
the estimation task. Consider two probability distributions: (1) Pσ1

under which the observed tensor
is T = σ1u1 ⊗w1 ⊗ v1 + Z where J1 and J2 have uniform distributions over k subsets of [n] and
v1 is uniform over a unit sphere. (2) P0 under which the observed tensor is T = Z . Noise entries are
i.i.d. normal. We need the following definition of contiguous distributions ([8]):
Definition 2. For every n ∈ N, let P0,n and P1,n be two probability measures on the same measure
space. We say that the sequence (P1,n) is contiguous with respect to (P0,n), if, for any sequence of
events An, we have

lim
n→∞

P0,n(An) = 0⇒ lim
n→∞

P1,n(An) = 0. (7)

Theorem 8. If σ2
1 < Õ(

√
mk), Pσ1 is contiguous with respect to P0.

This theorem with Lemma 2 of [8] establishes the converse of Theorem 7. The proof is based on
bounding the second moment of the Radon-Nikodym derivative of Pσ1 with respect to P0 (SM
Section 4.9).

5 Summary of Asymptotic Results

Table 1 summarizes asymptotic bounds for the case of ∆ = 1/
√
k and m = Θ(n). For the MLE we

consider the coherent model of Section 4.1. Also in Table 1 we summarize computational complexity
of different tensor biclustering methods. We discuss analytical and empirical running time of these
methods in SM Section 2.2.

Table 1: Comparative analysis of tensor biclustering methods. Results have been simplified for the
case of m = Θ(n) and ∆ = 1/

√
k.

Methods σ2
1 , noise model I σ2

1 , noise model II Comp. Complexity
Tensor Folding+Spectral Ω̃(n3/2) Ω̃(n3/2) O(n4)

Tensor Unfolding+Spectral Ω̃(n2) Ω̃(n2) O(n3)

Th. Sum of Squared Trajectory Lengths Ω̃(nk) Ω̃(nk2) O(n3)

Th. Individual Trajectory Lengths Ω̃(k2
√
n) Ω̃(nk2) O(n3)

Maximum Likelihood Ω̃(k) Ω̃(k) exp(n)

Statistical Lower Bound Õ(k) Õ(k) -
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Figure 3: Performance of different tensor biclustering methods in various values of σ1 (i.e., the signal
strength), under both noise models I and II. We consider n = 200, m = 50, k = 40. Experiments
have been repeated 10 times for each point.

In both noise models, the maximum likelihood estimator which has an exponential computational
complexity leads to the best achievability bound compared to other methods. Below this bound, the
inference is statistically impossible. Tensor folding+spectral method outperforms other methods
with polynomial computational complexity if k >

√
n under noise model I, and k > n1/4 under

noise model II. For smaller values of k, thresholding individual trajectory lengths lead to a better
achievability bound. This case is a part of the high-SNR regime where the average trajectory lengths
within the bicluster is significantly larger than the one outside of the bicluster. Unlike thresholding
individual trajectory lengths, other methods use the entire tensor to solve the tensor biclustering
problem. Thus, when k is very small, the accumulated noise can dominate the signal strength.
Moreover, the performance of the tensor unfolding method is always worst than the one of the tensor
folding method. The reason is that, the tensor unfolding method merely infers a low dimensional
subspace of trajectories, ignoring the block structure that true low dimensional trajectories form.

6 Numerical Results

6.1 Synthetic Data

In this section we evaluate the performance of different tensor biclustering methods in synthetic
datasets. We use the statistical model described in Section 4.1 to generate the input tensor T . Let
(Ĵ1, Ĵ2) be estimated bicluster indices (J1, J2) where |Ĵ1| = |Ĵ2| = k. To evaluate the inference
quality we compute the fraction of correctly recovered bicluster indices (SM Section 3.1).

In our simulations we consider n = 200, m = 50, k = 40. Figure 3 shows the performance of
four tensor biclustering methods in different values of σ1 (i.e., the signal strength), under both noise
models I and II. Tensor folding+spectral algorithm outperforms other methods in both noise models.
The gain is larger in the setup of noise model II compared to the one of noise model I.

6.2 Real Data

In this section we apply tensor biclustering methods to the roadmap epigenomics dataset [4] which
provides histon mark signal strengths in different segments of human genome in various tissues and
cell types. In this dataset, finding a subset of genome segments and a subset of tissues (cell-types)
with highly correlated histon mark values can provide insight on tissue-specific functional roles
of genome segments [4]. After pre-processing the data (SM Section 3.2), we obtain a data tensor
T ∈ Rn1×n2×m where n1 = 49 is the number of tissues (cell-types), n2 = 1457 is the number of
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Figure 4: An application of tensor biclustering methods to the the roadmap epigenomics data.

genome segments, and m = 7 is the number of histon marks. Note that although in our analytical
results for simplicity we assume n1 = n2, our proposed methods can be used in a more general case
such as the one considered in this section.

We form two combined covariance matrices C1 ∈ Rn1×n1 and C2 ∈ Rn2×n2 according to (3).
Figure 4-(a,b) shows largest eigenvalues of C1 and C2, respectively. As illustrated in these figures,
spectral gaps (i.e., λ1 − λ2) of these matrices are large, indicating the existence of a low dimensional
signal tensor in the input tensor. We also form an unfolded tensor Tunfolded ∈ Rm×n1n2 . Similarly,
there is a large gap between the first and second largest singular values of Tunfolded (Figure 4-c).

We use the tensor folding+spectral algorithm 1 with |J1| = 10 and |J2| = 400 (we consider other
values for the bicluster size in SM Section 3.2). The output of the algorithm (Ĵ1, Ĵ2) is illustrated in
Figure 4-d (note that for visualization purposes, we re-order rows and columns to have the bicluster
appear in the corner). Figure 4-e illustrates the unfolded subspace {T (j1, j2, :) : (j1, j2) ∈ Ĵ1 × Ĵ2}.
In this inferred bicluster, Histon marks H3K4me3, H3K9ac, and H3K27ac have relatively high values.
Reference [4] shows that these histon marks indicate a promoter region with an increased activation
in the genome.

To evaluate the quality of the inferred bicluster, we compute total absolute pairwise correlations
among vectors in the inferred bicluster. As illustrated in Figure 4-f, the quality of inferred bicluster
by tensor folding+spectral algorithm is larger than the one of other methods. Next, we compute the
bicluster quality by choosing bicluster indices uniformly at random with the same cardinality. We
repeat this experiment 100 times. There is a significant gap between the quality of these random
biclusters and the ones inferred by tensor biclustering methods indicating the significance of our
inferred biclusters. For more details on these experiment, see SM Section 3.2.

7 Discussion

In this paper, we introduced and analyzed the tensor biclustering problem. The goal is to compute a
subset of tensor rows and columns whose corresponding trajectories form a low dimensional subspace.
To solve this problem, we proposed a method called tensor folding+spectral which demonstrated
improved analytical and empirical performance compared to other considered methods. Moreover, we
characterized computational and statistical (information theoretic) limits for the tensor biclustering
problem in an asymptotic regime, under both coherent and non-coherent statistical models.

Our results consider the case when the rank of the subspace is equal to one (i.e., q = 1). When q > 1,
in both tensor folding+spectral and tensor unfolding+spectral methods, the embedded subspace in
the signal matrix will have a rank of q > 1, with singular values σ1 ≥ σ2 ≥ ... ≥ σq > 0. In this
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setup, we need the spectral radius of the noise matrix to be smaller than σq in order to guarantee
the recovery of the subspace. The procedure to characterize asymptotic achievability bounds would
follow from similar steps of the rank one case with some technical differences. For example, we
would need to extend Lemma 6 to the case where the signal matrix has rank q > 1. Moreover, in our
problem setup, we assumed that the size of the bicluster k and the rank of its subspace q are know
parameters. In practice, these parameters can be learned approximately from the data. For example,
in the tensor folding+spectral method, a good choice for the q parameter would be the index where
eigenvalues of the folded matrix decrease significantly. Knowing q, one can determine the size of
the bicluster similarly as the number of indices in top eigenvectors with significantly larger absolute
values. Another practical approach to estimate model parameters would be trial and error plus cross
validations.

Some of the developed proof techniques may be of independent interest as well. For example, we
proved an l∞ version of the Davis-Kahan lemma for a Wishart noise matrix. Solving the tensor
biclustering problem for the case of having multiple overlapping biclusters, for the case of having
incomplete tensor, and for the case of a priori unknown bicluster sizes are among future directions.

8 Code

We provide code for tensor biclustering methods in the following link: https://github.com/
SoheilFeizi/Tensor-Biclustering.

9 Acknowledgment

We thank Prof. Ofer Zeitouni for the helpful discussion on detectably proof techniques of probability
measures.

References
[1] Amos Tanay, Roded Sharan, and Ron Shamir. Biclustering algorithms: A survey. Handbook of

computational molecular biology, 9(1-20):122–124, 2005.

[2] Yudong Chen and Jiaming Xu. Statistical-computational tradeoffs in planted problems and
submatrix localization with a growing number of clusters and submatrices. arXiv preprint
arXiv:1402.1267, 2014.

[3] T Tony Cai, Tengyuan Liang, and Alexander Rakhlin. Computational and statistical boundaries
for submatrix localization in a large noisy matrix. arXiv preprint arXiv:1502.01988, 2015.

[4] Anshul Kundaje, Wouter Meuleman, Jason Ernst, Misha Bilenky, Angela Yen, Alireza Heravi-
Moussavi, Pouya Kheradpour, Zhizhuo Zhang, Jianrong Wang, Michael J Ziller, et al. Integrative
analysis of 111 reference human epigenomes. Nature, 518(7539):317–330, 2015.

[5] GTEx Consortium et al. The genotype-tissue expression (gtex) pilot analysis: Multitissue gene
regulation in humans. Science, 348(6235):648–660, 2015.

[6] Rui Chen, George I Mias, Jennifer Li-Pook-Than, Lihua Jiang, Hugo YK Lam, Rong Chen,
Elana Miriami, Konrad J Karczewski, Manoj Hariharan, Frederick E Dewey, et al. Personal
omics profiling reveals dynamic molecular and medical phenotypes. Cell, 148(6):1293–1307,
2012.

[7] Emile Richard and Andrea Montanari. A statistical model for tensor pca. In Advances in Neural
Information Processing Systems, pages 2897–2905, 2014.

[8] Andrea Montanari, Daniel Reichman, and Ofer Zeitouni. On the limitation of spectral methods:
From the gaussian hidden clique problem to rank-one perturbations of gaussian tensors. In
Advances in Neural Information Processing Systems, pages 217–225, 2015.

[9] Samuel B Hopkins, Tselil Schramm, Jonathan Shi, and David Steurer. Fast spectral algorithms
from sum-of-squares proofs: tensor decomposition and planted sparse vectors. arXiv preprint
arXiv:1512.02337, 2015.

9

https://github.com/SoheilFeizi/Tensor-Biclustering
https://github.com/SoheilFeizi/Tensor-Biclustering


[10] Samuel B Hopkins, Jonathan Shi, and David Steurer. Tensor principal component analysis via
sum-of-square proofs. In COLT, pages 956–1006, 2015.

[11] Amelia Perry, Alexander S Wein, and Afonso S Bandeira. Statistical limits of spiked tensor
models. arXiv preprint arXiv:1612.07728, 2016.

[12] Thibault Lesieur, Léo Miolane, Marc Lelarge, Florent Krzakala, and Lenka Zdeborová. Sta-
tistical and computational phase transitions in spiked tensor estimation. arXiv preprint
arXiv:1701.08010, 2017.

[13] Animashree Anandkumar, Rong Ge, and Majid Janzamin. Guaranteed non-orthogonal tensor
decomposition via alternating rank-1 updates. arXiv preprint arXiv:1402.5180, 2014.

[14] Anru Zhang and Dong Xia. Guaranteed tensor pca with optimality in statistics and computation.
arXiv preprint arXiv:1703.02724, 2017.

[15] Animashree Anandkumar, Rong Ge, Daniel J Hsu, and Sham M Kakade. A tensor approach
to learning mixed membership community models. Journal of Machine Learning Research,
15(1):2239–2312, 2014.

[16] Animashree Anandkumar, Rong Ge, Daniel J Hsu, Sham M Kakade, and Matus Telgarsky.
Tensor decompositions for learning latent variable models. Journal of Machine Learning
Research, 15(1):2773–2832, 2014.

[17] Victoria Hore, Ana Viñuela, Alfonso Buil, Julian Knight, Mark I McCarthy, Kerrin Small, and
Jonathan Marchini. Tensor decomposition for multiple-tissue gene expression experiments.
Nature Genetics, 48(9):1094–1100, 2016.

[18] Yiqiao Zhong and Nicolas Boumal. Near-optimal bounds for phase synchronization. arXiv
preprint arXiv:1703.06605, 2017.

10


