NIPS Proceedingsβ

Improving Regret Bounds for Combinatorial Semi-Bandits with Probabilistically Triggered Arms and Its Applications

Part of: Advances in Neural Information Processing Systems 30 (NIPS 2017) pre-proceedings

Pre-Proceedings

[PDF] [BibTeX] [Supplemental] [Reviews]

Authors

Conference Event Type: Poster

Abstract

We study combinatorial multi-armed bandit with probabilistically triggered arms (CMAB-T) and semi-bandit feedback. We resolve a serious issue in the prior CMAB-T studies where the regret bounds contain a possibly exponentially large factor of 1/p*, where p* is the minimum positive probability that an arm is triggered by any action. We address this issue by introducing a triggering probability modulated (TPM) bounded smoothness condition into the influence maximization bandit and combinatorial cascading bandit satisfy this TPM condition. As a result, we completely remove the factor of 1/p* from the regret bounds, achieving significantly better regret bounds for influence maximization and cascading bandits than before. Finally, we provide lower bound results showing that the factor 1/p* is unavoidable for general CMAB-T problems, suggesting that the TPM condition is crucial in removing this factor.