NIPS Proceedingsβ

Active Bias: Training More Accurate Neural Networks by Emphasizing High Variance Samples

Part of: Advances in Neural Information Processing Systems 30 (NIPS 2017) pre-proceedings

Pre-Proceedings

[PDF] [BibTeX] [Supplemental] [Reviews]

Authors

Conference Event Type: Poster

Abstract

Self-paced learning and hard example mining re-weight training instances to improve learning accuracy. This paper presents two improved alternatives based on lightweight estimates of sample uncertainty in stochastic gradient descent (SGD): the variance in predicted probability of the correct class across iterations of mini-batch SGD, and the proximity of the correct class probability to the decision threshold. Extensive experimental results on six datasets show that our methods reliably improve accuracy in various network architectures, including additional gains on top of other popular training techniques, such as residual learning, momentum, ADAM, batch normalization, dropout, and distillation.