
Online Multiclass Boosting

Young Hun Jung Jack Goetz
Department of Statistics
University of Michigan
Ann Arbor, MI 48109

{yhjung, jrgoetz, tewaria}@umich.edu

Ambuj Tewari

Abstract

Recent work has extended the theoretical analysis of boosting algorithms to multi-
class problems and to online settings. However, the multiclass extension is in the
batch setting and the online extensions only consider binary classification. We fill
this gap in the literature by defining, and justifying, a weak learning condition for
online multiclass boosting. This condition leads to an optimal boosting algorithm
that requires the minimal number of weak learners to achieve a certain accuracy.
Additionally, we propose an adaptive algorithm which is near optimal and enjoys
an excellent performance on real data due to its adaptive property.

1 Introduction

Boosting methods are a ensemble learning methods that aggregate several (not necessarily) weak
learners to build a stronger learner. When used to aggregate reasonably strong learners, boosting has
been shown to produce results competitive with other state-of-the-art methods (e.g., Korytkowski
et al. [1], Zhang and Wang [2]). Until recently theoretical development in this area has been focused
on batch binary settings where the learner can observe the entire training set at once, and the labels
are restricted to be binary (cf. Schapire and Freund [3]). In the past few years, progress has been
made to extend the theory and algorithms to more general settings.

Dealing with multiclass classification turned out to be more subtle than initially expected. Mukherjee
and Schapire [4] unify several different proposals made earlier in the literature and provide a general
framework for multiclass boosting. They state their weak learning conditions in terms of cost matrices
that have to satisfy certain restrictions: for example, labeling with the ground truth should have less
cost than labeling with some other labels. A weak learning condition, just like the binary condition,
states that the performance of a learner, now judged using a cost matrix, should be better than a
random guessing baseline. One particular condition they call the edge-over-random condition, proves
to be sufficient for boostability. The edge-over-random condition will also figure prominently in this
paper. They also consider a necessary and sufficient condition for boostability but it turns out to be
computationally intractable to be used in practice.

A recent trend in modern machine learning is to train learners in an online setting where the instances
come sequentially and the learner has to make predictions instantly. Oza [5] initially proposed an
online boosting algorithm that has accuracy comparable with the batch version, but it took several
years to design an algorithm with theoretical justification (Chen et al. [6]). Beygelzimer et al. [7]
achieved a breakthrough by proposing an optimal algorithm in online binary settings and an adaptive
algorithm that works quite well in practice. These theories in online binary boosting have led to
several extensions. For example, Chen et al. [8] combine one vs all method with binary boosting
algorithms to tackle online multiclass problems with bandit feedback, and Hu et al. [9] build a theory
of boosting in regression setting.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

In this paper, we combine the insights and techniques of Mukherjee and Schapire [4] and Beygelzimer
et al. [7] to provide a framework for online multiclass boosting. The cost matrix framework from the
former work is adopted to propose an online weak learning condition that defines how well a learner
can perform over a random guess (Definition 1). We show this condition is naturally derived from its
batch setting counterpart. From this weak learning condition, a boosting algorithm (Algorithm 1) is
proposed which is theoretically optimal in that it requires the minimal number of learners and sample
complexity to attain a specified level of accuracy. We also develop an adaptive algorithm (Algorithm
2) which allows learners to have variable strengths. This algorithm is theoretically less efficient than
the optimal one, but the experimental results show that it is quite comparable and sometimes even
better due to its adaptive property. Both algorithms not only possess theoretical proofs of mistake
bounds, but also demonstrate superior performance over preexisting methods.

2 Preliminaries

We first describe the basic setup for online boosting. While in the batch setting, an additional weak
learner is trained at every iteration, in the online setting, the algorithm starts with a fixed count
of N weak learners and a booster which manages the weak learners. There are k possible labels
[k] := {1, · · · , k} and k is known to the learners. At each iteration t = 1, · · · , T , an adversary picks
a labeled example (xt, yt) ∈ X × [k], where X is some domain, and reveals xt to the booster. Once
the booster observes the unlabeled data xt, it gathers the weak learners’ predictions and makes a final
prediction. Throughout this paper, index i takes values from 1 to N ; t from 1 to T ; and l from 1 to k.

We utilize the cost matrix framework, first proposed by Mukherjee and Schapire [4], to develop
multiclass boosting algorithms. This is a key ingredient in the multiclass extension as it enables
different penalization for each pair of correct label and prediction, and we further develop this
framework to suit the online setting. The booster sequentially computes cost matrices {Cit ∈
Rk×k | i = 1, · · · , N}, sends (xt,Cit) to the ith weak learner WLi, and gets its prediction lit ∈ [k].
Here the cost matrix Cit plays a role of loss function in that WLi tries to minimize the cumulative
cost

∑
t Cit[yt, lit]. As the booster wants each learner to predict the correct label, it wants to set the

diagonal entries of Cit to be minimal among its row. At this stage, the true label yt is not revealed yet,
but the previous weak learners’ predictions can affect the computation of the cost matrix for the next
learner. Given a matrix C, the (i, j)th entry will be denoted by C[i, j], and ith row vector by C[i].

Once all the learners make predictions, the booster makes the final prediction ŷt by majority votes.
The booster can either take simple majority votes or weighted ones. In fact for the adaptive algorithm,
we will allow weighted votes so that the booster can assign more weights on well-performing learners.
The weight for WLi at iteration t will be denoted by αit. After observing the booster’s final decision,
the adversary reveals the true label yt, and the booster suffers 0-1 loss 1(ŷt 6= yt). The booster also
shares the true label to the weak learners so that they can train on this data point.

Two main issues have to be resolved to design a good boosting algorithm. First, we need to design
the booster’s strategy for producing cost matrices. Second, we need to quantify weak learner’s
ability to reduce the cumulative cost

∑T
t=1 Cit[yt, lit]. The first issue will be resolved by introducing

potential functions, which will be thoroughly discussed in Section 3.1. For the second issue, we
introduce our online weak learning condition, a generalization of the weak learning assumption in
Beygelzimer et al. [7], stating that for any adaptively given sequence of cost matrices, weak learners
can produce predictions whose cumulative cost is less than that incurred by random guessing. The
online weak learning condition will be discussed in the following section. For the analysis of the
adaptive algorithm, we use empirical edges instead of the online weak learning condition.

2.1 Online weak learning condition

In this section, we propose an online weak learning condition that states the weak learners are better
than a random guess. We first define a baseline condition that is better than a random guess. Let
∆[k] denote a family of distributions over [k] and ulγ ∈ ∆[k] be a uniform distribution that puts γ
more weight on the label l. For example, u1

γ = (1−γ
k + γ, 1−γk , · · · , 1−γk). For a given sequence of

examples {(xt, yt) | t = 1, · · · , T}, Uγ ∈ RT×k consists of rows uytγ . Then we restrict the booster’s

2

choice of cost matrices to

Ceor1 := {C ∈ Rk×k | ∀l, r ∈ [k], C[l, l] = 0,C[l, r] ≥ 0, and ||C[l]||1 = 1}.
Note that diagonal entries are minimal among the row, and Ceor1 also has a normalization constraint.
A broader choice of cost matrices is allowed if one can assign importance weights on observations,
which is possible for various learners. Even if the learner does not take the importance weight as an
input, we can achieve a similar effect by sending to the learner an instance with probability that is
proportional to its weight. Interested readers can refer Beygelzimer et al. [7, Lemma 1]. From now
on, we will assume that our weak learners can take weight wt as an input.

We are ready to present our online weak learning condition. This condition is in fact naturally derived
from the batch setting counterpart that is well studied by Mukherjee and Schapire [4]. The link is
thoroughly discussed in Appendix A. For the scaling issue, we assume the weights wt lie in [0, 1].
Definition 1. (Online multiclass weak learning condition) For parameters γ, δ ∈ (0, 1), and
S > 0, a pair of online learner and an adversary is said to satisfy online weak learning condition
with parameters δ, γ, and S if for any sample length T , any adaptive sequence of labeled examples,
and for any adaptively chosen series of pairs of weight and cost matrix {(wt,Ct) ∈ [0, 1]×Ceor1 | t =
1, · · · , T}, the learner can generate predictions ŷt such that with probability at least 1− δ,

T∑
t=1

wtCt[yt, ŷt] ≤ C • U′γ + S =
1− γ
k
||w||1 + S, (1)

where C ∈ RT×k consists of rows of wtCt[yt] and A • B′ denotes the Frobenius inner product
Tr(AB′). w = (w1, · · · , wT) and the last equality holds due to the normalized condition on Ceor1 . γ
is called an edge, and S an excess loss.
Remark. Notice that this condition is imposed on a pair of learner and adversary instead of solely
on a learner. This is because no learner can satisfy this condition if the adversary draws samples
in a completely adaptive manner. The probabilistic statement is necessary because many online
algorithms’ predictions are not deterministic. The excess loss requirement is needed since an online
learner cannot produce meaningful predictions before observing a sufficient number of examples.

3 An optimal algorithm

In this section, we describe the booster’s optimal strategy for designing cost matrices. We first
introduce a general theory without specifying the loss, and later investigate the asymptotic behavior
of cumulative loss suffered by our algorithm under the specific 0-1 loss. We adopt the potential
function framework from Mukherjee and Schapire [4] and extend it to the online setting. Potential
functions help both in designing cost matrices and in proving the mistake bound of the algorithm.

3.1 A general online multiclass boost-by-majority (OnlineMBBM) algorithm

We will keep track of the weighted cumulative votes of the first i weak learners for the sample xt by
sit :=

∑i
j=1 α

j
teljt , where αit is the weight of WLi, lit is its prediction and ej is the jth standard basis

vector. For the optimal algorithm, we assume that αit = 1, ∀i, t. In other words, the booster makes
the final decision by simple majority votes. Given a cumulative vote s ∈ Rk, suppose we have a loss
function Lr(s) where r denotes the correct label. We call a loss function proper, if it is a decreasing
function of s[r] and an increasing function of other coordinates (we alert the reader that “proper loss”
has at least one other meaning in the literature). From now on, we will assume that our loss function
is proper. A good example of proper loss is multiclass 0-1 loss:

Lr(s) := 1(max
l 6=r

s[l] ≥ s[r]). (2)

The purpose of the potential function φri (s) is to estimate the booster’s loss when there remain i
learners until the final decision and the current cumulative vote is s. More precisely, we want potential
functions to satisfy the following conditions:

φr0(s) = Lr(s),
φri+1(s) = El∼urγφ

r
i (s + el).

(3)

3

Algorithm 1 Online Multiclass Boost-by-Majority (OnlineMBBM)
1: for t = 1, · · · , T do
2: Receive example xt
3: Set s0t = 0 ∈ Rk
4: for i = 1, · · · , N do
5: Set the normalized cost matrix Dit according to (5) and pass it to WLi

6: Get weak predictions lit = WLi(xt) and update sit = si−1t + elit
7: end for
8: Predict ŷt := argmaxl sNt [l] and receive true label yt
9: for i = 1, · · · , N do

10: Set wi[t] =
∑k
l=1[φytN−i(si−1t + el)− φytN−i(si−1t + eyt)]

11: Pass training example with weight (xt, yt,wi[t]) to WLi

12: end for
13: end for

Readers should note that φri (s) also inherits the proper property of the loss function, which can be
shown by induction. The condition (3) can be loosened by replacing both equalities by inequalities
“≥”, but in practice we usually use equalities.

Now we describe the booster’s strategy for designing cost matrices. After observing xt, the booster
sequentially sets a cost matrix Cit for WLi, gets the weak learner’s prediction lit and uses this in the
computation of the next cost matrix Ci+1

t . Ultimately, booster wants to set

Cit[r, l] = φrN−i(si−1t + el). (4)

However, this cost matrix does not satisfy the condition of Ceor1 , and thus should be modified in order
to utilize the weak learning condition. First to make the cost for the true label equal to 0, we subtract
Cit[r, r] from every element of Cit[r]. Since the potential function is proper, our new cost matrix still
has non-negative elements after the subtraction. We then normalize the row so that each row has `1
norm equal to 1. In other words, we get new normalized cost matrix

Dit[r, l] =
φrN−i(si−1t + el)− φrN−i(si−1t + er)

wi[t]
, (5)

where wi[t] :=
∑k
l=1 φ

r
N−i(si−1t + el)−φrN−i(si−1t + er) plays the role of weight. It is still possible

that a row vector Cit[r] is a zero vector so that normalization is impossible. In this case, we just leave
it as a zero vector. Our weak learning condition (1) still works with cost matrices some of whose row
vectors are zeros because however the learner predicts, it incurs no cost.

After defining cost matrices, the rest of the algorithm is straightforward except we have to estimate
||wi||∞ to normalize the weight. This is necessary because the weak learning condition assumes
the weights lying in [0, 1]. We cannot compute the exact value of ||wi||∞ until the last instance is
revealed, which is fine as we need this value only in proving the mistake bound. The estimate wi∗ for
||wi||∞ requires to specify the loss, and we postpone the technical parts to Appendix B.2. Interested
readers may directly refer Lemma 10 before proceeding. Once the learners generate predictions after
observing cost matrices, the final decision is made by simple majority votes. After the true label
is revealed, the booster updates the weight and sends the labeled instance with weight to the weak
learners. The pseudocode for the entire algorithm is depicted in Algorithm 1. The algorithm is named
after Beygelzimer et al. [7, OnlineBBM], which is in fact OnlineMBBM with binary labels.

We present our first main result regarding the mistake bound of general OnlineMBBM. The proof
appears in Appendix B.1 where the main idea is adopted from Beygelzimer et al. [7, Lemma 3].
Theorem 2. (Cumulative loss bound for OnlineMBBM) Suppose weak learners and an adversary
satisfy the online weak learning condition (1) with parameters δ, γ, and S. For any T andN satisfying
δ � 1

N , and any adaptive sequence of labeled examples generated by the adversary, the final loss
suffered by OnlineMBBM satisfies the following inequality with probability 1−Nδ:

T∑
t=1

Lyt(sNt) ≤ φ1N (0)T + S

N∑
i=1

wi∗. (6)

4

Here φ1N (0) plays a role of asymptotic error rate and the second term determines the sample com-
plexity. We will investigate the behavior of those terms under the 0-1 loss in the following section.

3.2 Mistake bound under 0-1 loss and its optimality

From now on, we will specify the loss to be multiclass 0-1 loss defined in (2), which might be the
most relevant measure in multiclass problems. To present a specific mistake bound, two terms in
the RHS of (6) should be bounded. This requires an approximation of potentials, which is technical
and postponed to Appendix B.2. Lemma 9 and 10 provide the bounds for those terms. We also
mention another bound for the weight in the remark after Lemma 10 so that one can use whichever
tighter. Combining the above lemmas with Theorem 2 gives the following corollary. The additional
constraint on γ comes from Lemma 10.

Corollary 3. (0-1 loss bound of OnlineMBBM) Suppose weak learners and an adversary satisfy
the online weak learning condition (1) with parameters δ, γ, and S, where γ < 1

2 . For any T and
N satisfying δ � 1

N and any adaptive sequence of labeled examples generated by the adversary,
OnlineMBBM can generate predictions ŷt that satisfy the following inequality with probability 1−Nδ:

T∑
t=1

1(yt 6= ŷt) ≤ (k − 1)e−
γ2N

2 T + Õ(k5/2
√
NS). (7)

Therefore in order to achieve error rate ε, it suffices to use N = Θ(1
γ2 ln k

ε) weak learners, which

gives an excess loss bound of Θ̃(k
5/2

γ S).

Remark. Note that the above excess loss bound gives a sample complexity bound of Θ̃(k
5/2

εγ S). If
we use alternative weight bound to get kNS as an upper bound for the second term in (6), we end up
having Õ(kNS). This will give an excess loss bound of Θ̃(kγ2S).

We now provide lower bounds on the number of learners and sample complexity for arbitrary online
boosting algorithms to evaluate the optimality of OnlineMBBM under 0-1 loss. In particular, we
construct weak learners that satisfy the online weak learning condition (1) and have almost matching
asymptotic error rate and excess loss compared to those of OnlineMBBM as in (7). Indeed we
can prove that the number of learners and sample complexity of OnlineMBBM is optimal up to
logarithmic factors, ignoring the influence of the number of classes k. Our bounds are possibly
suboptimal up to polynomial factors in k, and the problem to fill the gap remains open. The detailed
proof and a discussion of the gap can be found in Appendix B.3. Our lower bound is a multiclass
version of Beygelzimer et al. [7, Theorem 3].

Theorem 4. (Lower bounds for N and T) For any γ ∈ (0, 14), δ, ε ∈ (0, 1), and S ≥ k ln(1
δ)

γ , there
exists an adversary with a family of learners satisfying the online weak learning condition (1) with
parameters δ, γ, and S, such that to achieve asymptotic error rate ε, an online boosting algorithm
requires at least Ω(1

k2γ2 ln 1
ε) learners and a sample complexity of Ω(kεγS).

4 An adaptive algorithm

The online weak learning condition imposes minimal assumptions on the asymptotic accuracy of
learners, and obviously it leads to a solid theory of online boosting. However, it has two main practical
limitations. The first is the difficulty of estimating the edge γ. Given a learner and an adversary, it
is by no means a simple task to find the maximum edge that satisfies (1). The second issue is that
different learners may have different edges. Some learners may in fact be quite strong with significant
edges, while others are just slightly better than a random guess. In this case, OnlineMBBM has to
pick the minimum edge as it assumes common γ for all weak learners. It is obviously inefficient in
that the booster underestimates the strong learners’ accuracy.

Our adaptive algorithm will discard the online weak learning condition to provide a more practical
method. Empirical edges γ1, · · · , γN (see Section 4.2 for the definition) are measured for the weak
learners and are used to bound the number of mistakes made by the boosting algorithm.

5

4.1 Choice of loss function

Adaboost, proposed by Freund et al. [10], is arguably the most popular boosting algorithm in practice.
It aims to minimize the exponential loss, and has many variants which use some other surrogate
loss. The main reason of using a surrogate loss is ease of optimization; while 0-1 loss is not even
continuous, most surrogate losses are convex. We adopt the use of a surrogate loss for the same reason,
and throughout this section will discuss our choice of surrogate loss for the adaptive algorithm.

Exponential loss is a very strong candidate in that it provides a closed form for computing potential
functions, which are used to design cost matrices (cf. Mukherjee and Schapire [4, Theorem 13]).
One property of online setting, however, makes it unfavorable. Like OnlineMBBM, each data point
will have a different weight depending on weak learners’ performance, and if the algorithm uses
exponential loss, this weight will be an exponential function of difference in weighted cumulative
votes. With this exponentially varying weights among samples, the algorithm might end up depending
on very small portion of observed samples. This is undesirable because it is easier for the adversary
to manipulate the sample sequence to perturb the learner.

To overcome exponentially varying weights, Beygelzimer et al. [7] use logistic loss in their adaptive
algorithm. Logistic loss is more desirable in that its derivative is bounded and thus weights will be
relatively smooth. For this reason, we will also use multiclass version of logistic loss:

Lr(s) =:
∑
l 6=r

log(1 + exp(s[r]− s[r])). (8)

We still need to compute potential functions from logistic loss in order to calculate cost matrices.
Unfortunately, Mukherjee and Schapire [4] use a unique property of exponential loss to get a closed
form for potential functions, which cannot be adopted to logistic loss. However, the optimal cost
matrix induced from exponential loss has a very close connection with the gradient of the loss (cf.
Mukherjee and Schapire [4, Lemma 22]). From this, we will design our cost matrices as following:

Cit[r, l] :=

{
1

1+exp(si−1
t [r]−si−1

t [l])
, if l 6= r

−
∑
j 6=r

1
1+exp(si−1

t [r]−si−1
t [j])

, if l = r.
(9)

Readers should note that the row vector Cit[r] is simply the gradient of Lr(si−1t). Also note that this
matrix does not belong to Ceor1 , but it does guarantee that the correct prediction gets the minimal cost.

The choice of logistic loss over exponential loss is somewhat subjective. The undesirable property
of exponential loss does not necessarily mean that we cannot build an adaptive algorithm using this
loss. In fact, we can slightly modify Algorithm 2 to develop algorithms using different surrogates
(exponential loss and square hinge loss). However, their theoretical bounds are inferior to the one with
logistic loss. Interested readers can refer Appendix D, but it assumes understanding of Algorithm 2.

4.2 Adaboost.OLM

Our work is a generalization of Adaboost.OL by Beygelzimer et al. [7], from which the name
Adaboost.OLM comes with M standing for multiclass. We introduce a new concept of an expert.
From N weak learners, we can produce N experts where expert i makes its prediction by weighted
majority votes among the first i learners. Unlike OnlineMBBM, we allow varying weights αit over
the learners. As we are working with logistic loss, we want to minimize

∑
t L

yt(sit) for each i, where
the loss is given in (8). We want to alert the readers to note that even though the algorithm tries to
minimize the cumulative surrogate loss, its performance is still evaluated by 0-1 loss. The surrogate
loss only plays a role of a bridge that makes the algorithm adaptive.

We do not impose the online weak learning condition on weak learners, but instead just measure the
performance of WLi by γi :=

∑
t Cit[yt,l

i
t]∑

t Cit[yt,yt]
. This empirical edge will be used to bound the number of

mistakes made by Adaboost.OLM. By definition of cost matrix, we can check

Cit[yt, yt] ≤ Cit[yt, l] ≤ −Cit[yt, yt], ∀l ∈ [k],

from which we can prove −1 ≤ γi ≤ 1, ∀i. If the online weak learning condition is met with edge γ,
then one can show that γi ≥ γ with high probability when the sample size is sufficiently large.

6

Algorithm 2 Adaboost.OLM
1: Initialize: ∀i, vi1 = 1, αi1 = 0
2: for t = 1, · · · , T do
3: Receive example xt
4: Set s0t = 0 ∈ Rk
5: for i = 1, · · · , N do
6: Compute Cit according to (9) and pass it to WLi

7: Set lit = WLi(xt) and sit = si−1t + αitelit
8: Set ŷit = argmaxl sit[l], the prediction of expert i
9: end for

10: Randomly draw it with P(it = i) ∝ vit
11: Predict ŷt = ŷitt and receive the true label yt
12: for i = 1, · · · , N do
13: Set αit+1 = Π(αit − ηtf it

′
(αit)) using (10) and ηt = 2

√
2

(k−1)
√
t

14: Set wi[t] = −Cit[yt,yt]
k−1 and pass (xt, yt,wi[t]) to WLi

15: Set vit+1 = vit · exp(−1(yt 6= ŷit))
16: end for
17: end for

Unlike the optimal algorithm, we cannot show the last expert that utilizes all the learners has the
best accuracy. However, we can show at least one expert has a good predicting power. Therefore
we will use classical Hedge algorithm (Littlestone and Warmuth [11] and Freund and Schapire [12])
to randomly choose an expert at each iteration with adaptive probability weight depending on each
expert’s prediction history.

Finally we need to address how to set the weight αit for each weak learner. As our algorithm tries to
minimize the cumulative logistic loss, we want to set αit to minimize

∑
t L

yt(si−1t + αitelit). This
is again a classical topic in online learning, and we will use online gradient descent, proposed
by Zinkevich [13]. By letting, f it (α) := Lyt(si−1t + αelit), we need an online algorithm ensuring∑
t f

i
t (α

i
t) ≤ minα∈F

∑
t f

i
t (α) +Ri(T) where F is a feasible set to be specified later, and Ri(T)

is a regret that is sublinear in T . To apply Zinkevich [13, Theorem 1], we need f it to be convex
and F to be compact. The first assumption is met by our choice of logistic loss, and for the second
assumption, we will set F = [−2, 2]. There is no harm to restrict the choice of αit by F because we
can always scale the weights without affecting the result of weighted majority votes.

By taking derivatives, we get

f it
′
(α) =

{
1

1+exp(si−1
t [yt]−si−1

t [lit]−α)
, if lit 6= yt

−
∑
j 6=yt

1
1+exp(si−1

t [j]+α−si−1
t [yt])

, if lit = yt.
(10)

This provides |f it
′
(α)| ≤ k − 1. Now let Π(·) represent a projection onto F : Π(·) :=

max{−2,min{2, ·}}. By setting αit+1 = Π(αit − ηtf
i
t
′
(αit)) where ηt = 2

√
2

(k−1)
√
t
, we get

Ri(T) ≤ 4
√

2(k − 1)
√
T . Readers should note that any learning rate of the form ηt = c√

t
would

work, but our choice is optimized to ensure the minimal regret.

The pseudocode for Adaboost.OLM is presented in Algorithm 2. In fact, if we put k = 2, Ad-
aboost.OLM has the same structure with Adaboost.OL. As in OnlineMBBM, the booster also needs
to pass the weight along with labeled instance. According to (9), it can be inferred that the weight is
proportional to −Cit[yt, yt].

4.3 Mistake bound and comparison to the optimal algorithm

Now we present our second main result that provides a mistake bound of Adaboost.OLM. The main
structure of the proof is adopted from Beygelzimer et al. [7, Theorem 4] but in a generalized cost
matrix framework. The proof appears in Appendix C.

7

Theorem 5. (Mistake bound of Adaboost.OLM) For any T and N , with probability 1 − δ, the
number of mistakes made by Adaboost.OLM satisfies the following inequality:

T∑
t=1

1(yt 6= ŷt) ≤
8(k − 1)∑N
i=1 γ

2
i

T + Õ(
kN2∑N
i=1 γ

2
i

),

where Õ notation suppresses dependence on log 1
δ .

Remark. Note that this theorem naturally implies Beygelzimer et al. [7, Theorem 4]. The difference
in coefficients is due to different scaling of γi. In fact, their γi ranges from [− 1

2 ,
1
2].

Now that we have established a mistake bound, it is worthwhile to compare the bound with the
optimal boosting algorithm. Suppose the weak learners satisfy the weak learning condition (1)
with edge γ. For simplicity, we will ignore the excess loss S. As we have γi =

∑
t Cit[yt,l

i
t]∑

t Cit[yt,yt]
≥ γ

with high probability, the mistake bound becomes 8(k−1)
γ2N T + Õ(kNγ2). In order to achieve error

rate ε, Adaboost.OLM requires N ≥ 8(k−1)
εγ2 learners and T = Ω̃(k2

ε2γ4) sample size. Note that

OnlineMBBM requires N = Ω(1
γ2 ln k

ε) and T = min{Ω̃(k
5/2

εγ), Ω̃(k
εγ2)}. Adaboost.OLM is

obviously suboptimal, but due to its adaptive feature, its performance on real data is quite comparable
to that by OnlineMBBM.

5 Experiments

We compare the new algorithms to existing ones for online boosting on several UCI data sets, each
with k classes1. Table 1 contains some highlights, with additional results and experimental details in
the Appendix E. Here we show both the average accuracy on the final 20% of each data set, as well as
the average run time for each algorithm. Best decision tree gives the performance of the best of 100
online decision trees fit using the VFDT algorithm in Domingos and Hulten [14], which were used as
the weak learners in all other algorithms, and Online Boosting is an algorithm taken from Oza [5].
Both provide a baseline for comparison with the new Adaboost.OLM and OnlineMBBM algorithms.
Best MBBM takes the best result from running the OnlineMBBM with five different values of the
edge parameter γ.

Despite being theoretically weaker, Adaboost.OLM often demonstrates similar accuracy and some-
times outperforms Best MBBM, which exemplifies the power of adaptivity in practice. This power
comes from the ability to use diverse learners efficiently, instead of being limited by the strength of
the weakest learner. OnlineMBBM suffers from high computational cost, as well as the difficulty of
choosing the correct value of γ, which in general is unknown, but when the correct value of γ is used
it peforms very well. Finally in all cases Adaboost.OLM and OnlineMBBM algorithms outperform
both the best tree and the preexisting Online Boosting algorithm, while also enjoying theoretical
accuracy bounds.

Table 1: Comparison of algorithm accuracy on final 20% of data set and run time in seconds. Best
accuracy on a data set reported in bold.

Data sets k Best decision tree Online Boosting Adaboost.OLM Best MBBM

Balance 3 0.768 8 0.772 19 0.754 20 0.821 42
Mice 8 0.608 105 0.399 263 0.561 416 0.695 2173
Cars 4 0.924 39 0.914 27 0.930 59 0.914 56
Mushroom 2 0.999 241 1.000 169 1.000 355 1.000 325
Nursery 4 0.953 526 0.941 302 0.966 735 0.969 1510
ISOLET 26 0.515 470 0.149 1497 0.521 2422 0.635 64707
Movement 5 0.915 1960 0.870 3437 0.962 5072 0.988 18676

1Codes are available at https://github.com/yhjung88/OnlineBoostingWithVFDT

8

Acknowledgments

We acknowledge the support of NSF under grants CAREER IIS-1452099 and CIF-1422157.

References
[1] Marcin Korytkowski, Leszek Rutkowski, and Rafał Scherer. Fast image classification by boosting fuzzy

classifiers. Information Sciences, 327:175–182, 2016.

[2] Xiao-Lei Zhang and DeLiang Wang. Boosted deep neural networks and multi-resolution cochleagram
features for voice activity detection. In INTERSPEECH, pages 1534–1538, 2014.

[3] Robert E Schapire and Yoav Freund. Boosting: Foundations and algorithms. MIT press, 2012.

[4] Indraneel Mukherjee and Robert E Schapire. A theory of multiclass boosting. Journal of Machine Learning
Research, 14(Feb):437–497, 2013.

[5] Nikunj C Oza. Online bagging and boosting. In 2005 IEEE international conference on systems, man and
cybernetics, volume 3, pages 2340–2345. IEEE, 2005.

[6] Shang-Tse Chen, Hsuan-Tien Lin, and Chi-Jen Lu. An online boosting algorithm with theoretical
justifications. ICML, 2012.

[7] Alina Beygelzimer, Satyen Kale, and Haipeng Luo. Optimal and adaptive algorithms for online boosting.
ICML, 2015.

[8] Shang-Tse Chen, Hsuan-Tien Lin, and Chi-Jen Lu. Boosting with online binary learners for the multiclass
bandit problem. In Proceedings of The 31st ICML, pages 342–350, 2014.

[9] Hanzhang Hu, Wen Sun, Arun Venkatraman, Martial Hebert, and Andrew Bagnell. Gradient boosting on
stochastic data streams. In Artificial Intelligence and Statistics, pages 595–603, 2017.

[10] Yoav Freund, Robert Schapire, and N Abe. A short introduction to boosting. Journal-Japanese Society For
Artificial Intelligence, 14(771-780):1612, 1999.

[11] Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. In Foundations of Computer
Science, 1989., 30th Annual Symposium on, pages 256–261. IEEE, 1989.

[12] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line learning and an
application to boosting. In European conference on computational learning theory, pages 23–37. Springer,
1995.

[13] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proceed-
ings of 20th ICML, 2003.

[14] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Proceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 71–80. ACM, 2000.

[15] Amit Daniely, Sivan Sabato, Shai Ben-David, and Shai Shalev-Shwartz. Multiclass learnability and the
erm principle. In COLT, pages 207–232, 2011.

[16] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm.
Machine learning, 2(4):285–318, 1988.

[17] Volodimir G Vovk. Aggregating strategies. In Proc. Third Workshop on Computational Learning Theory,
pages 371–383. Morgan Kaufmann, 1990.

[18] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university press,
2006.

[19] Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends R© in Optimization,
2(3-4):157–325, 2016.

[20] Robert E Schapire. Drifting games. Machine Learning, 43(3):265–291, 2001.

[21] Eric V Slud. Distribution inequalities for the binomial law. The Annals of Probability, pages 404–412,
1977.

[22] C.L. Blake and C.J. Merz. UCI machine learning repository, 1998. URL http://archive.ics.uci.
edu/ml.

9

[23] Cios KJ Higuera C, Gardiner KJ. Self-organizing feature maps identify proteins critical to learning in a
mouse model of down syndrome. PLoS ONE, 2015.

[24] Wallace Ugulino, Débora Cardador, Katia Vega, Eduardo Velloso, Ruy Milidiú, and Hugo Fuks. Wearable
computing: Accelerometers’ data classification of body postures and movements. In Advances in Artificial
Intelligence-SBIA 2012, pages 52–61. Springer, 2012.

10

