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Abstract

Reinforcement learning is a powerful paradigm for learning optimal policies from
experimental data. However, to find optimal policies, most reinforcement learning
algorithms explore all possible actions, which may be harmful for real-world sys-
tems. As a consequence, learning algorithms are rarely applied on safety-critical
systems in the real world. In this paper, we present a learning algorithm that
explicitly considers safety, defined in terms of stability guarantees. Specifically,
we extend control-theoretic results on Lyapunov stability verification and show
how to use statistical models of the dynamics to obtain high-performance control
policies with provable stability certificates. Moreover, under additional regularity
assumptions in terms of a Gaussian process prior, we prove that one can effectively
and safely collect data in order to learn about the dynamics and thus both improve
control performance and expand the safe region of the state space. In our experi-
ments, we show how the resulting algorithm can safely optimize a neural network
policy on a simulated inverted pendulum, without the pendulum ever falling down.

1 Introduction

While reinforcement learning (RL, [1]) algorithms have achieved impressive results in games, for
example on the Atari platform [2], they are rarely applied to real-world physical systems (e.g., robots)
outside of academia. The main reason is that RL algorithms provide optimal policies only in the
long-term, so that intermediate policies may be unsafe, break the system, or harm their environment.
This is especially true in safety-critical systems that can affect human lives. Despite this, safety in RL
has remained largely an open problem [3].

Consider, for example, a self-driving car. While it is desirable for the algorithm that drives the
car to improve over time (e.g., by adapting to driver preferences and changing environments), any
policy applied to the system has to guarantee safe driving. Thus, it is not possible to learn about the
system through random exploratory actions, which almost certainly lead to a crash. In order to avoid
this problem, the learning algorithm needs to consider its ability to safely recover from exploratory
actions. In particular, we want the car to be able to recover to a safe state, for example, driving at a
reasonable speed in the middle of the lane. This ability to recover is known as asymptotic stability
in control theory [4]. Specifically, we care about the region of attraction of the closed-loop system
under a policy. This is a subset of the state space that is forward invariant so that any state trajectory
that starts within this set stays within it for all times and converges to a goal state eventually.
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In this paper, we present a RL algorithm for continuous state-action spaces that provides these kind
of high-probability safety guarantees for policies. In particular, we show how, starting from an initial,
safe policy we can expand our estimate of the region of attraction by collecting data inside the safe
region and adapt the policy to both increase the region of attraction and improve control performance.

Related work Safety is an active research topic in RL and different definitions of safety exist [5, 6].
Discrete Markov decision processes (MDPs) are one class of tractable models that have been analyzed.
In risk-sensitive RL, one specifies risk-aversion in the reward [7]. For example, [8] define risk as
the probability of driving the agent to a set of known, undesirable states. Similarly, robust MDPs
maximize rewards when transition probabilities are uncertain [9, 10]. Both [11] and [12] introduce
algorithms to safely explore MDPs so that the agent never gets stuck without safe actions. All these
methods require an accurate probabilistic model of the system.

In continuous state-action spaces, model-free policy search algorithms have been successful. These
update policies without a system model by repeatedly executing the same task [13]. In this set-
ting, [14] introduces safety guarantees in terms of constraint satisfaction that hold in expectation.
High-probability worst-case safety guarantees are available for methods based on Bayesian optimiza-
tion [15] together with Gaussian process models (GP, [16]) of the cost function. The algorithms
in [17] and [18] provide high-probability safety guarantees for any parameter that is evaluated on
the real system. These methods are used in [19] to safely optimize a parametric control policy on a
quadrotor. However, resulting policies are task-specific and require the system to be reset.

In the model-based RL setting, research has focused on safety in terms of state constraints. In
[20, 21], a priori known, safe global backup policies are used, while [22] learns to switch between
several safe policies. However, it is not clear how one may find these policies in the first place.
Other approaches use model predictive control with constraints, a model-based technique where the
control actions are optimized online. For example, [23] models uncertain environmental constraints,
while [24] uses approximate uncertainty propagation of GP dynamics along trajectories. In this
setting, robust feasability and constraint satisfaction can be guaranteed for a learned model with
bounded errors using robust model predictive control [25]. The method in [26] uses reachability
analysis to construct safe regions in the state space. The theoretical guarantees depend on the solution
to a partial differential equation, which is approximated.

Theoretical guarantees for the stability exist for the more tractable stability analysis and verification
under a fixed control policy. In control, stability of a known system can be verified using a Lyapunov
function [27]. A similar approach is used by [28] for deterministic, but unknown dynamics that are
modeled as a GP, which allows for provably safe learning of regions of attraction for fixed policies.
Similar results are shown in [29] for stochastic systems that are modeled as a GP. They use Bayesian
quadrature to compute provably accurate estimates of the region of attraction. These approaches do
not update the policy.

Our contributions We introduce a novel algorithm that can safely optimize policies in continuous
state-action spaces while providing high-probability safety guarantees in terms of stability. Moreover,
we show that it is possible to exploit the regularity properties of the system in order to safely learn
about the dynamics and thus improve the policy and increase the estimated safe region of attraction
without ever leaving it. Specifically, starting from a policy that is known to stabilize the system
locally, we gather data at informative, safe points and improve the policy safely based on the improved
model of the system and prove that any exploration algorithm that gathers data at these points reaches
a natural notion of full exploration. We show how the theoretical results transfer to a practical
algorithm with safety guarantees and apply it to a simulated inverted pendulum stabilization task.

2 Background and Assumptions

We consider a deterministic, discrete-time dynamic system

xt+1 = f(xt,ut) = h(xt,ut) + g(xt,ut), (1)

with states x ∈ X ⊂ Rq and control actions u ∈ U ⊂ Rp and a discrete time index t ∈ N. The true
dynamics f : X × U → X consist of two parts: h(xt,ut) is a known, prior model that can be
obtained from first principles, while g(xt,ut) represents a priori unknown model errors. While the
model errors are unknown, we can obtain noisy measurements of f(x,u) by driving the system to
the state x and taking action u. We want this system to behave in a certain way, e.g., the car driving
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on the road. To this end, we need to specify a control policy π : X → U that, given the current state,
determines the appropriate control action that drives the system to some goal state, which we set as
the origin without loss of generality [4]. We encode the performance requirements of how to drive
the system to the origin through a positive cost r(x,u) that is associated with states and actions and
has r(0,0) = 0. The policy aims to minimize the cumulative, discounted costs for each starting state.

The goal is to safely learn about the dynamics from measurements and adapt the policy for perfor-
mance, without encountering system failures. Specifically, we define the safety constraint on the
state divergence that occurs when leaving the region of attraction. This means that adapting the
policy is not allowed to decrease the region of attraction and exploratory actions to learn about the
dynamics f(·) are not allowed to drive the system outside the region of attraction. The region of
attraction is not known a priori, but is implicitly defined through the system dynamics and the choice
of policy. Thus, the policy not only defines performance as in typical RL, but also determines safety
and where we can obtain measurements.

Model assumptions In general, this kind of safe learning is impossible without further assumptions.
For example, in a discontinuous system even a slight change in the control policy can lead to drastically
different behavior. Moreover, to expand the safe set we need to generalize learned knowledge about
the dynamics to (potentially unsafe) states that we have not visited. To this end, we restrict ourselves
to the general and practically relevant class of models that are Lipschitz continuous. This is a typical
assumption in the control community [4]. Additionally, to ensure that the closed-loop system remains
Lipschitz continuous when the control policy is applied, we restrict policies to the rich class of
Lπ-Lipschitz continuous functions ΠL, which also contains certain types of neural networks [30].
Assumption 1 (continuity). The dynamics h(·) and g(·) in (1) are Lh- and Lg Lipschitz continuous
with respect to the 1-norm. The considered control policies π lie in a set ΠL of functions that
are Lπ-Lipschitz continuous with respect to the 1-norm.

To enable safe learning, we require a reliable statistical model. While we commit to GPs for the
exploration analysis, for safety any suitable, well-calibrated model is applicable.
Assumption 2 (well-calibrated model). Let µn(·) and Σn(·) denote the posterior mean and covari-
ance matrix functions of the statistical model of the dynamics (1) conditioned on n noisy measurements.
With σn(·) = trace(Σ

1/2
n (·)), there exists a βn > 0 such that with probability at least (1− δ) it holds

for all n ≥ 0, x ∈ X , and u ∈ U that ‖f(x,u)− µn(x,u)‖1 ≤ βnσn(x,u).

This assumption ensures that we can build confidence intervals on the dynamics that, when scaled by
an appropriate constant βn, cover the true function with high probability. We introduce a specific
statistical model that fulfills both assumptions under certain regularity assumptions in Sec. 3.

Lyapunov function To satisfy the specified safety constraints for safe learning, we require a tool
to determine whether individual states and actions are safe. In control theory, this safety is defined
through the region of attraction, which can be computed for a fixed policy using Lyapunov func-
tions [4]. Lyapunov functions are continuously differentiable functions v : X → R≥0 with v(0) = 0
and v(x) > 0 for all x ∈ X \ {0}. The key idea behind using Lyapunov functions to show stability
of the system (1) is similar to that of gradient descent on strictly quasiconvex functions: if one can
show that, given a policy π, applying the dynamics f on the state maps it to strictly smaller values
on the Lyapunov function (‘going downhill’), then the state eventually converges to the equilibrium
point at the origin (minimum). In particular, the assumptions in Theorem 1 below imply that v is
strictly quasiconvex within the region of attraction if the dynamics are Lipschitz continuous. As a
result, the one step decrease property for all states within a level set guarantees eventual convergence
to the origin.
Theorem 1 ([4]). Let v be a Lyapunov function, f Lipschitz continuous dynamics, and π a policy. If
v(f(x, π(x))) < v(x) for all x within the level set V(c) = {x ∈ X \ {0} | v(x) ≤ c}, c > 0, then
V(c) is a region of attraction, so that x0 ∈ V(c) implies xt ∈ V(c) for all t > 0 and limt→∞ xt = 0.

It is convenient to characterize the region of attraction through a level set of the Lyapunov function,
since it replaces the challenging test for convergence with a one-step decrease condition on the
Lyapunov function. For the theoretical analysis in this paper, we assume that a Lyapunov function is
given to determine the region of attraction. For ease of notation, we also assume ∂v(x)/∂x 6= 0 for
all x ∈ X \ 0, which ensures that level sets V(c) are connected if c > 0. Since Lyapunov functions
are continuously differentiable, they are Lv-Lipschitz continuous over the compact set X .
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In general, it is not easy to find suitable Lyapunov functions. However, for physical models, like the
prior model h in (1), the energy of the system (e.g., kinetic and potential for mechanical systems) is a
good candidate Lyapunov function. Moreover, it has recently been shown that it is possible to compute
suitable Lyapunov functions [31, 32]. In our experiments, we exploit the fact that value functions in
RL are Lyapunov functions if the costs are strictly positive away from the origin. This follows directly
from the definition of the value function, where v(x) = r(x, π(x)) +v(f(x, π(x)) ≤ v(f(x, π(x))).
Thus, we can obtain Lyapunov candidates as a by-product of approximate dynamic programming.

Initial safe policy Lastly, we need to ensure that there exists a safe starting point for the learning
process. Thus, we assume that we have an initial policy π0 that renders the origin of the system in (1)
asymptotically stable within some small set of states Sx0 . For example, this policy may be designed
using the prior model h in (1), since most models are locally accurate but deteriorate in quality as
state magnitude increases. This policy is explicitly not safe to use throughout the state space X \Sx0 .

3 Theory

In this section, we use these assumptions for safe reinforcement learning. We start by computing the
region of attraction for a fixed policy under the statistical model. Next, we optimize the policy in order
to expand the region of attraction. Lastly, we show that it is possible to safely learn about the dynamics
and, under additional assumptions about the model and the system’s reachability properties, that this
approach expands the estimated region of attraction safely. We consider an idealized algorithm that is
amenable to analysis, which we convert to a practical variant in Sec. 4. See Fig. 1 for an illustrative
run of the algorithm and examples of the sets defined below.

Region of attraction We start by computing the region of attraction for a fixed policy. This is an
extension of the method in [28] to discrete-time systems. We want to use the Lyapunov decrease condi-
tion in Theorem 1 to guarantee safety for the statistical model of the dynamics. However, the posterior
uncertainty in the statistical model of the dynamics means that one step predictions about v(f(·)) are
uncertain too. We account for this by constructing high-probability confidence intervals on v(f(x,u)):
Qn(x,u) := [v(µn−1(x,u))± Lvβnσn−1(x,u)]. From Assumption 2 together with the Lipschitz
property of v, we know that v(f(x,u)) is contained inQn(x,u) with probability at least (1− δ). For
our exploration analysis, we need to ensure that safe state-actions cannot become unsafe; that is, an
initial set of safe set S0 remains safe (defined later). To this end, we intersect the confidence intervals:
Cn(x,u) := Cn−1 ∩Qn(x,u), where the set C is initialized to C0(x,u) = (−∞, v(x)− L∆vτ)
when (x,u) ∈ S0 and C0(x,u) = R otherwise. Note that v(f(x,u)) is contained in Cn(x,u) with
the same (1− δ) probability as in Assumption 2. The upper and lower bounds on v(f(·)) are defined
as un(x,u) := max Cn(x,u) and ln(x,u) := min Cn(x,u).

Given these high-probability confidence intervals, the system is stable according to Theorem 1 if
v(f(x,u)) ≤ un(x) < v(x) for all x ∈ V(c). However, it is intractable to verify this condition
directly on the continuous domain without additional, restrictive assumptions about the model.
Instead, we consider a discretization of the state space Xτ ⊂ X into cells, so that ‖x− [x]τ‖1 ≤ τ
holds for all x ∈ X . Here, [x]τ denotes the point in Xτ with the smallest l1 distance to x. Given this
discretization, we bound the decrease variation on the Lyapunov function for states in Xτ and use the
Lipschitz continuity to generalize to the continuous state space X .
Theorem 2. Under Assumptions 1 and 2 with L∆v := LvLf (Lπ + 1) + Lv , let Xτ be a discretiza-
tion of X such that ‖x− [x]τ‖1 ≤ τ for all x ∈ X . If, for all x ∈ V(c) ∩ Xτ with c > 0, u = π(x),
and for some n ≥ 0 it holds that un(x,u) < v(x)− L∆vτ, then v(f(x, π(x))) < v(x) holds for all
x ∈ V(c) with probability at least (1− δ) and V(c) is a region of attraction for (1) under policy π.

The proof is given in Appendix A.1. Theorem 2 states that, given confidence intervals on the statistical
model of the dynamics, it is sufficient to check the stricter decrease condition in Theorem 2 on the
discretized domain Xτ to guarantee the requirements for the region of attraction in the continuous
domain in Theorem 1. The bound in Theorem 2 becomes tight as the discretization constant τ
and |v(f(·))− un(·)| go to zero. Thus, the discretization constant trades off computation costs for
accuracy, while un approaches v(f(·)) as we obtain more measurement data and the posterior model
uncertainty about the dynamics,

√
βnσn decreases. The confidence intervals on v(f(x, π(x))− v(x)

and the corresponding estimated region of attraction (red line) can be seen in the bottom half of Fig. 1.

Policy optimization So far, we have focused on estimating the region of attraction for a fixed policy.
Safety is a property of states under a fixed policy. This means that the policy directly determines
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Figure 1: Example application of Algorithm 1. Due to input constraints, the system becomes unstable
for large states. We start from an initial, local policy π0 that has a small, safe region of attraction (red
lines) in Fig. 1(a). The algorithm selects safe, informative state-action pairs within Sn (top, white
shaded), which can be evaluated without leaving the region of attraction V(cn) (red lines) of the
current policy πn. As we gather more data (blue crosses), the uncertainty in the model decreases
(top, background) and we use (3) to update the policy so that it lies within Dn (top, red shaded) and
fulfills the Lyapunov decrease condition. The algorithm converges to the largest safe set in Fig. 1(c).
It improves the policy without evaluating unsafe state-action pairs and thereby without system failure.

which states are safe. Specifically, to form a region of attraction all states in the discretizaton Xτ
within a level set of the Lyapunov function need to fulfill the decrease condition in Theorem 2 that
depends on the policy choice. The set of all state-action pairs that fulfill this decrease condition is
given by

Dn =
{

(x,u) ∈ Xτ × U |un(x,u)− v(x) < −L∆vτ
}
, (2)

see Fig. 1(c) (top, red shaded). In order to estimate the region of attraction based on this set, we
need to commit to a policy. Specifically, we want to pick the policy that leads to the largest possible
region of attraction according to Theorem 2. This requires that for each discrete state in Xτ the
corresponding state-action pair under the policy must be in the set Dn. Thus, we optimize the policy
according to

πn, cn = argmax
π∈ΠL,c∈R>0

c, such that for all x ∈ V(c) ∩ Xτ : (x, π(x)) ∈ Dn. (3)

The region of attraction that corresponds to the optimized policy πn according to (3) is given
by V(cn), see Fig. 1(b). It is the largest level set of the Lyapunov function for which all state-action
pairs (x, πn(x)) that correspond to discrete states within V(cn) ∩ Xτ are contained in Dn. This
means that these state-action pairs fulfill the requirements of Theorem 2 and V(cn) is a region of
attraction of the true system under policy πn. The following theorem is thus a direct consequence
of Theorem 2 and (3).
Theorem 3. LetRπn be the true region of attraction of (1) under the policy πn. For any δ ∈ (0, 1),
we have with probability at least (1− δ) that V(cn) ⊆ Rπn for all n > 0.

Thus, when we optimize the policy subject to the constraint in (3) the estimated region of attraction is
always an inner approximation of the true region of attraction. However, solving the optimization
problem in (3) is intractable in general. We approximate the policy update step in Sec. 4.

Collecting measurements Given these stability guarantees, it is natural to ask how one might obtain
data points in order to improve the model of g(·) and thus efficiently increase the region of attraction.
This question is difficult to answer in general, since it depends on the property of the statistical model.
In particular, for general statistical models it is often not clear whether the confidence intervals
contract sufficiently quickly. In the following, we make additional assumptions about the model and
reachability within V(cn) in order to provide exploration guarantees. These assumptions allow us to
highlight fundamental requirements for safe data acquisition and that safe exploration is possible.
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We assume that the unknown model errors g(·) have bounded norm in a reproducing kernel Hilbert
space (RKHS, [33]) corresponding to a differentiable kernel k, ‖g(·)‖k ≤ Bg. These are a class of
well-behaved functions of the form g(z) =

∑∞
i=0 αik(zi, z) defined through representer points zi

and weights αi that decay sufficiently fast with i. This assumption ensures that g satisfies the
Lipschitz property in Assumption 1, see [28]. Moreover, with βn = Bg + 4σ

√
γn + 1 + ln(1/δ) we

can use GP models for the dynamics that fulfill Assumption 2 if the state if fully observable and the
measurement noise is σ-sub-Gaussian (e.g., bounded in [−σ, σ]), see [34]. Here γn is the information
capacity. It corresponds to the amount of mutual information that can be obtained about g from nq
measurements, a measure of the size of the function class encoded by the model. The information
capacity has a sublinear dependence on n for common kernels and upper bounds can be computed
efficiently [35]. More details about this model are given in Appendix A.2.

In order to quantify the exploration properties of our algorithm, we consider a discrete action
space Uτ ⊂ U . We define exploration as the number of state-action pairs in Xτ × Uτ that we can
safely learn about without leaving the true region of attraction. Note that despite this discretization,
the policy takes values on the continuous domain. Moreover, instead of using the confidence intervals
directly as in (3), we consider an algorithm that uses the Lipschitz constants to slowly expand the safe
set. We use this in our analysis to quantify the ability to generalize beyond the current safe set. In
practice, nearby states are sufficiently correlated under the model to enable generalization using (2).

Suppose we are given a set S0 of state-action pairs about which we can learn safely. Specifically, this
means that we have a policy such that, for any state-action pair (x,u) in S0, if we apply action u in
state x and then apply actions according to the policy, the state converges to the origin. Such a set
can be constructed using the initial policy π0 from Sec. 2 as S0 = {(x, π0(x)) |x ∈ Sx0 }. Starting
from this set, we want to update the policy to expand the region of attraction according to Theorem 2.
To this end, we use the confidence intervals on v(f(·)) for states inside S0 to determine state-action
pairs that fulfill the decrease condition. We thus redefine Dn for the exploration analysis to

Dn =
⋃

(x,u)∈Sn−1

{
z′ ∈ Xτ × Uτ |un(x,u)− v(x) + L∆v‖z′ − (x,u)‖1 < −L∆vτ

}
. (4)

This formulation is equivalent to (2), except that it uses the Lipschitz constant to generalize safety.
Given Dn, we can again find a region of attraction V(cn) by committing to a policy according to (3).
In order to expand this region of attraction effectively we need to decrease the posterior model
uncertainty about the dynamics of the GP by collecting measurements. However, to ensure safety
as outlined in Sec. 2, we are not only restricted to states within V(cn), but also need to ensure that
the state after taking an action is safe; that is, the dynamics map the state back into the region of
attraction V(cn). We again use the Lipschitz constant in order to determine this set,

Sn =
⋃

z∈Sn−1

{
z′ ∈ V(cn) ∩ Xτ × Uτ |un(z) + LvLf‖z− z′‖1 ≤ cn}. (5)

The set Sn contains state-action pairs that we can safely evaluate under the current policy πn without
leaving the region of attraction, see Fig. 1 (top, white shaded).

What remains is to define a strategy for collecting data points within Sn to effectively decrease model
uncertainty. We specifically focus on the high-level requirements for any exploration scheme without
committing to a specific method. In practice, any (model-based) exploration strategy that aims to
decrease model uncertainty by driving the system to specific states may be used. Safety can be
ensured by picking actions according to πn whenever the exploration strategy reaches the boundary
of the safe region V(cn); that is, when un(x,u) > cn. This way, we can use πn as a backup policy
for exploration.

The high-level goal of the exploration strategy is to shrink the confidence intervals at state-action
pairs Sn in order to expand the safe region. Specifically, the exploration strategy should aim to visit
state-action pairs in Sn at which we are the most uncertain about the dynamics; that is, where the
confidence interval is the largest:

(xn,un) = argmax
(x,u)∈Sn

un(x,u)− ln(x,u). (6)

As we keep collecting data points according to (6), we decrease the uncertainty about the dynamics
for different actions throughout the region of attraction and adapt the policy, until eventually we
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Algorithm 1 SAFELYAPUNOVLEARNING

1: Input: Initial safe policy π0, dynamics model GP(µ(z), k(z, z′))
2: for all n = 1, . . . do
3: Compute policy πn via SGD on (7)
4: cn = argmaxc c, such that ∀x ∈ V(cn) ∩ Xτ : un(x, πn(x))− v(x) < −L∆vτ
5: Sn = {(x,u) ∈ V(cn)× Uτ |un(x,u) ≤ cn}
6: Select (xn,un) within Sn using (6) and drive system there with backup policy πn
7: Update GP with measurements f(xn,un) + εn

have gathered enough information in order to expand it. While (6) implicitly assumes that any
state within V(cn) can be reached by the exploration policy, it achieves the high-level goal of any
exploration algorithm that aims to reduce model uncertainty. In practice, any safe exploration scheme
is limited by unreachable parts of the state space.

We compare the active learning scheme in (6) to an oracle baseline that starts from the same initial
safe set S0 and knows v(f(x,u)) up to ε accuracy within the safe set. The oracle also uses knowledge
about the Lipschitz constants and the optimal policy in ΠL at each iteration. We denote the set that this
baseline manages to determine as safe with Rε(S0) and provide a detailed definition in Appendix A.3.

Theorem 4. Assume σ-sub-Gaussian measurement noise and that the model error g(·)
in (1) has RKHS norm smaller than Bg. Under the assumptions of Theorem 2,
with βn = Bg + 4σ

√
γn + 1 + ln(1/δ), and with measurements collected according to (6), let

n∗ be the smallest positive integer so that n∗

β2
n∗γn∗

≥ Cq(|R(S0)|+1)
L2
vε

2 where C = 8/ log(1 + σ−2).

Let Rπ be the true region of attraction of (1) under a policy π. For any ε > 0, and δ ∈ (0, 1), the
following holds jointly with probability at least (1− δ) for all n > 0:

(i) V(cn) ⊆ Rπn (ii) f(x,u) ∈ Rπn ∀(x,u) ∈ Sn. (iii) Rε(S0) ⊆ Sn ⊆ R0(S0).

Theorem 4 states that, when selecting data points according to (6), the estimated region of attrac-
tion V(cn) is (i) contained in the true region of attraction under the current policy and (ii) selected
data points do not cause the system to leave the region of attraction. This means that any exploration
method that considers the safety constraint (5) is able to safely learn about the system without leaving
the region of attraction. The last part of Theorem 4, (iii), states that after a finite number of data
points n∗ we achieve at least the exploration performance of the oracle baseline, while we do not
classify unsafe state-action pairs as safe. This means that the algorithm explores the largest region
of attraction possible for a given Lyapunov function with residual uncertaint about v(f(·)) smaller
than ε. Details of the comparison baseline are given in the appendix. In practice, this means that any
exploration method that manages to reduce the maximal uncertainty about the dynamics within Sn is
able to expand the region of attraction.

An example run of repeatedly evaluating (6) for a one-dimensional state-space is shown in Fig. 1. It
can be seen that, by only selecting data points within the current estimate of the region of attraction,
the algorithm can efficiently optimize the policy and expand the safe region over time.

4 Practical Implementation and Experiments

In the previous section, we have given strong theoretical results on safety and exploration for an
idealized algorithm that can solve (3). In this section, we provide a practical variant of the theoretical
algorithm in the previous section. In particular, while we retain safety guarantees, we sacrifice
exploration guarantees to obtain a more practical algorithm. This is summarized in Algorithm 1.

The policy optimization problem in (3) is intractable to solve and only considers safety, rather
than a performance metric. We propose to use an approximate policy update that that maximizes
approximate performance while providing stability guarantees. It proceeds by optimizing the policy
first and then computes the region of attraction V(cn) for the new, fixed policy. This does not
impact safety, since data is still only collected inside the region of attraction. Moreover, should the
optimization fail and the region of attraction decrease, one can always revert to the previous policy,
which is guaranteed to be safe.
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Figure 2: Optimization results for an inverted pendulum. Fig. 2(a) shows the initial safe set (yellow)
under the policy π0, while the green region represents the estimated region of attraction under the
optimized neural network policy. It is contained within the true region of attraction (white). Fig. 2(b)
shows the improved performance of the safely learned policy over the policy for the prior model.

In our experiments, we use approximate dynamic programming [36] to capture the performance of the
policy. Given a policy πθ with parameters θ, we compute an estimate of the cost-to-go Jπθ (·) for the
mean dynamics µn based on the cost r(x,u) ≥ 0. At each state, Jπθ (x) is the sum of γ-discounted
rewards encountered when following the policy πθ. The goal is to adapt the parameters of the policy
for minimum cost as measured by Jπθ , while ensuring that the safety constraint on the worst-case
decrease on the Lyapunov function in Theorem 2 is not violated. A Lagrangian formulation to this
constrained optimization problem is

πn = argmin
πθ∈ΠL

∫
x∈X

r(x, πθ(x))+γJπθ (µn−1(x, πθ(x))+λ
(
un(x, πθ(x))−v(x)+L∆vτ

)
, (7)

where the first term measures long-term cost to go and λ ≥ 0 is a Lagrange multiplier for the safety
constraint from Theorem 2. In our experiments, we use the value function as a Lyapunov function
candidate, v = J with r(·, ·) ≥ 0, and set λ = 1. In this case, (7) corresponds to an high-probability
upper bound on the cost-to-go given the uncertainty in the dynamics. This is similar to worst-case
performance formulations found in robust MDPs [9, 10], which consider worst-case value functions
given parametric uncertainty in MDP transition model. Moreover, since L∆v depends on the Lipschitz
constant of the policy, this simultaneously serves as a regularizer on the parameters θ.

To verify safety, we use the GP confidence intervals ln and un directly, as in (2). We also use
confidence to compute Sn for the active learning scheme, see Algorithm 1, Line 5. In practice, we
do not need to compute the entire set Sn to solve (3), but can use a global optimization method or
even a random sampling scheme within V(cn) to find suitable state-actions. Moreover, measurements
for actions that are far away from the current policy are unlikely to expand V(cn), see Fig. 1(c). As
we optimize (7) via gradient descent, the policy changes only locally. Thus, we can achieve better
data-efficiency by restricting the exploratory actions u with (x,u) ∈ Sn to be close to πn, u ∈
[πn(x)− ū, πn(x) + ū] for some constant ū.

Computing the region of attraction by verifying the stability condition on a discretized domain suffers
from the curse of dimensionality. However, it is not necessary to update policies in real time. In
particular, since any policy that is returned by the algorithm is provably safe within some level set,
any of these policies can be used safely for an arbitrary number of time steps. To scale this method to
higher-dimensional system, one would have to consider an adaptive discretization for the verification
as in [27].

Experiments A Python implementation of Algorithm 1 and the experiments based on Tensor-
Flow [37] and GPflow [38] is available at https://github.com/befelix/safe_learning.

We verify our approach on an inverted pendulum benchmark problem. The true, continuous-time
dynamics are given by ml2ψ̈ = gml sin(ψ) − λψ̇ + u, where ψ is the angle, m the mass, g the
gravitational constant, and u the torque applied to the pendulum. The control torque is limited, so that
the pendulum necessarily falls down beyond a certain angle. We use a GP model for the discrete-time
dynamics, where the mean dynamics are given by a linearized and discretized model of the true
dynamics that considers a wrong, lower mass and neglects friction. As a result, the optimal policy for
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the mean dynamics does not perform well and has a small region of attraction as it underactuates the
system. We use a combination of linear and Matérn kernels in order to capture the model errors that
result from parameter and integration errors.

For the policy, we use a neural network with two hidden layers and 32 neurons with ReLU activations
each. We compute a conservative estimate of the Lipschitz constant as in [30]. We use standard
approximate dynamic programming with a quadratic, normalized cost r(x,u) = xTQx + uTRu,
where Q and R are positive-definite, to compute the cost-to-go Jπθ . Specifically, we use a piecewise-
linear triangulation of the state-space as to approximate Jπθ , see [39]. This allows us to quickly
verify the assumptions that we made about the Lyapunov function in Sec. 2 using a graph search. In
practice, one may use other function approximators. We optimize the policy via stochastic gradient
descent on (7), where we sample a finite subset of X and replace the integral in (7) with a sum.

The theoretical confidence intervals for the GP model are conservative. To enable more data-efficient
learning, we fix βn = 2. This corresponds to a high-probability decrease condition per-state, rather
than jointly over the state space. Moreover, we use local Lipschitz constants of the Lyapunov function
rather than the global one. While this does not affect guarantees, it greatly speeds up exploration.

For the initial policy, we use approximate dynamic programming to compute the optimal policy for
the prior mean dynamics. This policy is unstable for large deviations from the initial state and has poor
performance, as shown in Fig. 2(b). Under this initial, suboptimal policy, the system is stable within
a small region of the state-space Fig. 2(a). Starting from this initial safe set, the algorithm proceeds to
collect safe data points and improve the policy. As the uncertainty about the dynamics decreases, the
policy improves and the estimated region of attraction increases. The region of attraction after 50 data
points is shown in Fig. 2(a). The resulting set V(cn) is contained within the true safe region of the
optimized policy πn. At the same time, the control performance improves drastically relative to the
initial policy, as can be seen in Fig. 2(b). Overall, the approach enables safe learning about dynamic
systems, as all data points collected during learning are safely collected under the current policy.

5 Conclusion

We have shown how classical reinforcement learning can be combined with safety constraints in terms
of stability. Specifically, we showed how to safely optimize policies and give stability certificates
based on statistical models of the dynamics. Moreover, we provided theoretical safety and exploration
guarantees for an algorithm that can drive the system to desired state-action pairs during learning. We
believe that our results present an important first step towards safe reinforcement learning algorithms
that are applicable to real-world problems.
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