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Abstract

We present a learnt system for multi-view stereopsis. In contrast to recent learning
based methods for 3D reconstruction, we leverage the underlying 3D geometry of
the problem through feature projection and unprojection along viewing rays. By
formulating these operations in a differentiable manner, we are able to learn the
system end-to-end for the task of metric 3D reconstruction. End-to-end learning
allows us to jointly reason about shape priors while conforming to geometric
constraints, enabling reconstruction from much fewer images (even a single image)
than required by classical approaches as well as completion of unseen surfaces. We
thoroughly evaluate our approach on the ShapeNet dataset and demonstrate the
benefits over classical approaches and recent learning based methods.

1 Introduction

Multi-view stereopsis (MVS) is classically posed as the following problem - given a set of images
with known camera poses, it produces a geometric representation of the underlying 3D world. This
representation can be a set of disparity maps, a 3D volume in the form of voxel occupancies, signed
distance fields etc. An early example of such a system is the stereo machine from Kanade et al. [26]
that computes disparity maps from images streams from six video cameras. Modern approaches
focus on acquiring the full 3D geometry in the form of volumetric representations or polygonal
meshes [48]. The underlying principle behind MVS is simple - a 3D point looks locally similar when
projected to different viewpoints [29]. Thus, classical methods use the basic principle of finding
dense correspondences in images and triangulate to obtain a 3D reconstruction.

The question we try to address in this work is can we learn a multi-view stereo system? For the
binocular case, Becker and Hinton [1] demonstrated that a neural network can learn to predict a depth
map from random dot stereograms. A recent work [28] shows convincing results for binocular stereo
by using an end-to-end learning approach with binocular geometry constraints.

In this work, we present Learnt Stereo Machines (LSM) - a system which is able to reconstruct object
geometry as voxel occupancy grids or per-view depth maps from a small number of views, including
just a single image. We design our system inspired by classical approaches while learning each
component from data embedded in an end to end system. LSMs have built in projective geometry,
enabling reasoning in metric 3D space and effectively exploiting the geometric structure of the MVS
problem. Compared to classical approaches, which are designed to exploit a specific cue such as
silhouettes or photo-consistency, our system learns to exploit the cues that are relevant to the particular
instance while also using priors about shape to predict geometry for unseen regions.

Recent work from Choy et al. [5] (3D-R2N2) trains convolutional neural networks (CNNs) to
predict object geometry given only images. While this work relied primarily on semantic cues for
reconstruction, our formulation enables us to exploit strong geometric cues. In our experiments, we
demonstrate that a straightforward way of incorporating camera poses for volumetric occupancy
prediction does not lead to expected gains, while our geometrically grounded method is able to
effectively utilize the additional information.
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Figure 1: Overview of a Learnt Stereo Machine (LSM). It takes as input one or more views and camera poses.
The images are processed through a feature encoder which are then unprojected into the 3D world frame using a
differentiable unprojection operation. These grids {Gf

i }
n
i=1 are then matched in a recurrent manner to produce a

fused grid Gp which is then transformed by a 3D CNN into Go. LSMs can produce two kinds of outputs - voxel
occupancy grids (Voxel LSM) decoded from Go or per-view depth maps (Depth LSM) decoded after a projection
operation.

Classical multi-view stereopsis is traditionally able to handle both objects and scenes - we only
showcase our system for the case of objects with scenes left for future work. We thoroughly evaluate
our system on the synthetic ShapeNet [3] dataset. We compare to classical plane sweeping stereo,
visual hulls and several challenging learning-based baselines. Our experiments show that we are able
to reconstruct objects with fewer images than classical approaches. Compared to recent learning
based reconstruction approaches, our system is able to better use camera pose information leading to
significantly large improvements while adding more views. Finally, we show successful generalization
to unseen object categories demonstrating that our network goes beyond semantic cues and strongly
uses geometric information for unified single and multi-view 3D reconstruction.

2 Related Work

Extracting 3D information from images is one of the classical problems in computer vision. Early
works focused on the problem of extracting a disparity map from a binocular image pair [36]. We
refer the reader to [47] for an overview of classical binocular stereo matching algorithms. In the multi-
view setting, early work focused on using silhouette information via visual hulls [32], incorporating
photo-consistency to deal with concavities (photo hull) [29], and shape refinement using optimization
[55, 50, 7, 15]. [39, 35, 54] directly reason about viewing rays in a voxel grid, while [34] recovers
a quasi dense point cloud. In our work, we aim to learn a multi-view stereo machine grounded in
geometry, that learns to use these classical constraints while also being able to reason about semantic
shape cues from the data. Another approach to MVS involves representing the reconstruction as a
collection of depth maps [6, 57, 41, 13, 40]. This allows recovery of fine details for which a consistent
global estimate may be hard to obtain. These depth maps can then be fused using a variety of different
techniques [38, 8, 33, 59, 30]. Our learnt system is able to produce a set of per-view depth maps
along with a globally consistent volumetric representation which allows us to preserve fine details
while conforming to global structure.

Learning has been used for multi-view reconstruction in the form of shape priors for objects [2, 9, 58,
20, 27, 52], or semantic class specific surface priors for scenes [22, 17, 45]. These works use learnt
shape models and either directly fit them to input images or utilize them in a joint representation
that fuses semantic and geometric information. Most recently, CNN based learning methods have
been proposed for 3D reconstruction by learning image patch similarity functions [60, 18, 23] and
end-to-end disparity regression from stereo pairs [37, 28]. Approaches which predict shape from
a single image have been proposed in form of direct depth map regression [46, 31, 10], generating
multiple depth maps from novel viewpoints [51], producing voxel occupancies [5, 16], geometry
images [49] and point clouds [11]. [12] study a related problem of view interpolation, where a rough
depth estimate is obtained within the system.

A line of recent works, complementary to ours, has proposed to incorporate ideas from multi-view
geometry in a learning framework to train single view prediction systems [14, 56, 53, 42, 61] using
multiple views as supervisory signal. These works use the classical cues of photo-consistency and

2



Depth planes

1-D 
Canvas

1-D Projections

Camera

Sampling locations 1-D 
Feature Map

(a) Projection (b) Unprojection
Camera

2-D Feature Grid

2-D World Grid

z =
 1

z =
 2z =

 3

z = 1

z = 2

z = 3

Figure 2: Illustrations of projection and unprojection operations between 1D maps and 2D grids. (a) The
projection operation samples values along the ray at equally spaced z-values into a 1D canvas/image. The
sampled features (shown by colors here) at the z planes are stacked into channels to form the projected feature
map. (b) The unprojection operation takes features from a feature map (here in 1-D) and places them along rays
at grid blocks where the respective rays intersect. Best viewed in color.

silhouette consistency only during training - their goal during inference is to only perform single
image shape prediction. In contrast, we also use geometric constraints during inference to produce
high quality outputs.

Closest to our work is the work of Kendall et al. [28] which demonstrates incorporating binocular
stereo geometry into deep networks by formulating a cost volume in terms of disparities and regressing
depth values using a differentiable arg-min operation. We generalize to multiple views by tracing
rays through a discretized grid and handle variable number of views via incremental matching using
recurrent units. We also propose a differentiable projection operation which aggregates features along
viewing rays and learns a nonlinear combination function instead of using the differentiable arg-min
which is susceptible to multiple modes. Moreover, we can also infer 3D from a single image during
inference.

3 Learnt Stereo Machines

Our goal in this paper is to design an end-to-end learnable system that produces a 3D reconstruction
given one or more input images and their corresponding camera poses. To this end, we draw inspira-
tion from classical geometric approaches where the underlying guiding principle is the following - the
reconstructed 3D surface has to be photo-consistent with all the input images that depict this particular
surface. Such approaches typically operate by first computing dense features for correspondence
matching in image space. These features are then assembled into a large cost volume of geometrically
feasible matches based on the camera pose. Finally, the optimum of this matching volume (along
with certain priors) results in an estimate of the 3D volume/surface/disparity maps of the underlying
shape from which the images were produced.

Our proposed system, shown in Figure 1, largely follows the principles mentioned above. It uses
a discrete grid as internal representation of the 3D world and operates in metric 3D space. The
input images {Ii}ni=1 are first processed through a shared image encoder which produces dense
feature maps {Fi}ni=1, one for each image. The features are then unprojected into 3D feature grids
{Gfi }ni=1 by rasterizing the viewing rays with the known camera poses {Pi}ni=1. This unprojection
operation aligns the features along epipolar lines, enabling efficient local matching. This matching
is modelled using a recurrent neural network which processes the unprojected grids sequentially to
produce a grid of local matching costs Gp. This cost volume is typically noisy and is smoothed in
an energy optimization framework with a data term and smoothness term. We model this step by a
feed forward 3D convolution-deconvolution CNN that transforms Gp into a 3D grid Go of smoothed
costs taking context into account. Based on the desired output, we propose to either let the final
grid be a volumetric occupancy map or a grid of features which is projected back into 2D feature
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maps {Oi}ni=1 using the given camera poses. These 2D maps are then mapped to a view specific
representation of the shape such as a per view depth/disparity map. The key components of our
system are the differentiable projection and unprojection operations which allow us to learn the
system end-to-end while injecting the underlying 3D geometry in a metrically accurate manner. We
refer to our system as a Learnt Stereo Machine (LSM). We present two variants - one that produces
per voxel occupancy maps (Voxel LSM) and another that outputs a depth map per input image (Depth
LSM) and provide details about the components and the rationale behind them below.

2D Image Encoder. The first step in a stereo algorithm is to compute a good set of features to
match across images. Traditional stereo algorithms typically use raw patches as features. We model
this as a feed forward CNN with a convolution-deconvolution architecture with skip connections
(UNet) [44] to enable the features to have a large enough receptive field while at the same time having
access to lower level features (using skip connections) whenever needed. Given images {Ii}ni=1, the
feature encoder produces dense feature maps {Fi}ni=1 in 2D image space, which are passed to the
unprojection module along with the camera parameters to be lifted into metric 3D space.

Differentiable Unprojection. The goal of the unprojection operation is to lift information from
2D image frame to the 3D world frame. Given a 2D point p, its feature representation F(p) and our
global 3D grid representation, we replicate F(p) along the viewing ray for p into locations along
the viewing ray in the metric 3D grid (a 2D illustration is presented in Figure 2). In the case of
perspective projection specified by an intrinsic camera matrix K and an extrinsic camera matrix [R|t],
the unprojection operation uses this camera pose to trace viewing rays in the world and copy the
image features into voxels in this 3D world grid. Instead of analytically tracing rays, given the centers
of blocks in our 3D grid {Xk

w}
NV

k=1, we compute the feature for kth block by projecting {Xk
w} using

the camera projection equations p′k = K[R|t]Xk
w into the image space. p′k is a continuous quantity

whereas F is defined on at discrete 2D locations. Thus, we use the differentiable bilinear sampling
operation to sample from the discrete grid [25] to obtain the feature at Xk

w.

Such an operation has the highly desirable property that features from pixels in multiple images
that may correspond to the same 3D world point unproject to the same location in the 3D grid -
trivially enforcing epipolar constraints. As a result, any further processing on these unprojected grids
has easy access to corresponding features to make matching decisions foregoing the need for long
range image connections for feature matching in image space. Also, by projecting discrete 3D points
into 2D and bilinearly sampling from the feature map rather than analytically tracing rays in 3D,
we implicitly handle the issue where the probability of a grid voxel being hit by a ray decreases
with distance from the camera due to their projective nature. In our formulation, every voxel gets
a “soft" feature assigned based on where it projects back in the image, making the feature grids
Gf smooth and providing stable gradients. This geometric procedure of lifting features from 2D
maps into 3D space is in contrast with recent learning based approaches [5, 51] which either reshape
flattened feature maps into 3D grids for subsequent processing or inject pose into the system using
fully connected layers. This procedure effectively saves the network from having to implicitly learn
projective geometry and directly bakes this given fact into the system. In LSMs, we use this operation
to unproject the feature maps {Fi}ni=1 in image space produced by the feature encoder into feature
grids {Gfi }ni=1 that lie in metric 3D space.

For single image prediction, LSMs cannot match features from multiple images to reason about where
to place surfaces. Therefore, we append geometric features along the rays during the projection and
unprojection operation to facilitate single view prediction. Specifically, we add the depth value and
the ray direction at each sampling point.

Recurrent Grid Fusion. The 3D feature grids {Gfi }ni=1 encode information about individual input
images and need to be fused to produce a single grid so that further stages may reason jointly over all
the images. For example, a simple strategy to fuse them would be to just use a point-wise function -
e.g. max or average. This approach poses an issue where the combination is too spatially local and
early fuses all the information from the individual grids. Another extreme is concatenating all the
feature grids before further processing. The complexity of this approach scales linearly with the
number of inputs and poses issues while processing a variable number of images. Instead, we choose
to processed the grids in a sequential manner using a recurrent neural network. Specifically, we use a
3D convolutional variant of the Gated Recurrent Unit (GRU) [24, 4, 5] which combines the grids
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{Gfi }ni=1 using 3D convolutions (and non-linearities) into a single grid Gp. Using convolutions helps
us effectively exploit neighborhood information in 3D space for incrementally combining the grids
while keeping the number of parameters low. Intuitively, this step can be thought of as mimicking
incremental matching in MVS where the hidden state of the GRU stores a running belief about the
matching scores by matching features in the observations it has seen. One issue that arises is that we
now have to define an ordering on the input images, whereas the output should be independent of the
image ordering. We tackle this issue by randomly permuting the image sequences during training
while constraining the output to be the same. During inference, we empirically observe that the final
output has very little variance with respect to ordering of the input image sequence.

3D Grid Reasoning. Once the fused grid Gp is constructed, a classical multi-view stereo approach
would directly evaluate the photo-consistency at the grid locations by comparing the appearance of
the individual views and extract the surface at voxels where the images agree. We model this step with
a 3D UNet that transforms the fused grid Gp into Go. The purpose of this network is to use shape cues
present in Gp such as feature matches and silhouettes as well as build in shape priors like smoothness
and symmetries and knowledge about object classes enabling it to produce complete shapes even
when only partial information is visible. The UNet architecture yet again allows the system to use
large enough receptive fields for doing multi-scale matching while also using lower level information
directly when needed to produce its final estimate Go. In the case of full 3D supervision (Voxel LSM),
this grid can be made to represent a per voxel occupancy map. Go can also be seen as a feature grid
containing the final representation of the 3D world our system produces from which views can be
rendered using the projection operation described below.

Differentiable Projection. Given a 3D feature grid G and a camera P , the projection operation
produces a 2D feature map O by gathering information along viewing rays. The direct method would
be to trace rays for every pixel and accumulate information from all the voxels on the ray’s path.
Such an implementation would require handling the fact that different rays can pass through different
number of voxels on their way. For example, one can define a reduction function along the rays to
aggregate information (e.g. max, mean) but this would fail to capture spatial relationships between
the ray features. Instead, we choose to adopt a plane sweeping approach where we sample from
locations on depth planes at equally spaced z-values {zk}Nz

k=1 along the ray.

Consider a 3D point Xw that lies along the ray corresponding to a 2D point p in the projected
feature grid at depth zw - i.e. p = K[R|t]Xw and z(Xw) = zw. The corresponding feature O(p) is
computed by sampling from the grid G at the (continuous) location Xw. This sampling can be done
differentiably in 3D using trilinear interpolation. In practice, we use nearest neighbor interpolation
in 3D for computational efficiency. Samples along each ray are concatenated in ascending z-order
to produce the 2D map O where the features are stacked along the channel dimension. Rays in this
feature grid can be trivially traversed by just following columns along the channel dimension allowing
us to learn the function to pool along these rays by using 1x1 convolutions on these feature maps and
progressively reducing the number of feature channels.

Architecture Details. As mentioned above, we present two versions of LSMs - Voxel LSM (V-
LSM) and Depth LSM (D-LSM). Given one or more images and cameras, Voxel LSM (V-LSM)
produces a voxel occupancy grid whereas D-LSM produces a depth map per input view. Both
systems share the same set of CNN architectures (UNet) for the image encoder, grid reasoning and
the recurrent pooling steps. We use instance normalization for all our convolution operations and
layer normalization for the 3D convolutional GRU. In V-LSM, the final grid Go is transformed into
a probabilistic voxel occupancy map V ∈ Rvh×vw×vd by a 3D convolution followed by softmax
operation. We use simple binary cross entropy loss between ground truth occupancy maps and V . In
D-LSM, Go is first projected into 2D feature maps {Oi}ni=1 which are then transformed into metric
depth maps {di}ni=1 by 1x1 convolutions to learn the reduction function along rays followed by
deconvolution layers to upsample the feature map back to the size of the input image. We use absolute
L1 error in depth to train D-LSM. We also add skip connections between early layers of the image
encoder and the last deconvolution layers producing depth maps giving it access to high frequency
information in the images.
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Figure 3: Voxel grids produced by V-LSM for example image sequences alongside a learning based baseline
which uses pose information in a fully connected manner. V-LSM produces geometrically meaningful recon-
structions (e.g. the curved arm rests instead of perpendicular ones (in R2N2) in the chair on the top left and
the siren lights on top of the police car) instead of relying on purely semantic cues. More visualizations in
supplementary material.

4 Experiments

In this section, we demonstrate the ability of LSMs to learn 3D shape reconstruction in a geometrically
accurate manner. First, we present quantitative results for V-LSMs on the ShapeNet dataset [3] and
compare it to various baselines, both classical and learning based. We then show that LSMs generalize
to unseen object categories validating our hypothesis that LSMs go beyond object/class specific priors
and use photo-consistency cues to perform category-agnostic reconstruction. Finally, we present
qualitative and quantitative results from D-LSM and compare it to traditional multi-view stereo
approaches.

Dataset and Metrics. We use the synthetic ShapeNet dataset [3] to generate posed image-sets,
ground truth 3D occupancy maps and depth maps for all our experiments. More specifically, we
use a subset of 13 major categories (same as [5]) containing around 44k 3D models resized to lie
within the unit cube centered at the origin with a train/val/test split of [0.7, 0.1, 0.2]. We generated a
large set of realistic renderings for the models sampled from a viewing sphere with θaz ∈ [0, 360)
and θel ∈ [−20, 30] degrees and random lighting variations. We also rendered the depth images
corresponding to each rendered image. For the volumetric ground truth, we voxelize each of the
models at a resolution of 32× 32× 32. In order to evaluate the outputs of V-LSM, we binarize the
probabilities at a fixed threshold (0.4 for all methods except visual hull (0.75)) and use the voxel
intersection over union (IoU) as the similarity measure. To aggregate the per model IoU, we compute
a per class average and take the mean as a per dataset measure. All our models are trained in a class
agnostic manner.

Implementation. We use 224 × 224 images to train LSMs with a shape batch size of 4 and
4 views per shape. Our world grid is at a resolution of 323. We implemented our networks in
Tensorflow and trained both the variants of LSMs for 100k iterations using Adam. The projection and
unprojection operations are trivially implemented on the GPU with batched matrix multiplications
and bilinear/nearest sampling enabling inference at around 30 models/sec on a GTX 1080Ti. We
unroll the GRU for upto 4 time steps while training and apply the trained models for arbitrary number
of views at test time.

Multi-view Reconstruction on ShapeNet. We evaluate V-LSMs on the ShapeNet test set and
compare it to the following baselines - a visual hull baseline which uses silhouettes to carve out
volumes, 3D-R2N2 [5], a previously proposed system which doesn’t use camera pose and performs
multi-view reconstruction, 3D-R2N2 w/pose which is an extension of 3D-R2N2 where camera pose
is injected using fully connected layers. For the experiments, we implemented the 3D-R2N2 system
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# Views 1 2 3 4

3D-R2N2 [5] 55.6 59.6 61.3 62.0

Visual Hull 18.0 36.9 47.0 52.4
3D-R2N2 w/pose 55.1 59.4 61.2 62.1
V-LSM 61.5 72.1 76.2 78.2

V-LSM w/bg 60.5 69.8 73.7 75.6

Table 1: Mean Voxel IoU on the ShapeNet test set. Note
that the original 3D-R2N2 system does not use camera
pose whereas the 3D-R2N2 w/pose system is trained
with pose information. V-LSM w/bg refers to voxel LSM
trained and tested with random images as backgrounds
instead of white backgrounds only.
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Figure 4: Generalization performance for V-LSM
and 3D-R2N2 w/pose measured by gap in voxel
IoU when tested on unseen object categories.

Figure 5: Qualitative results for per-view depth map prediction on ShapeNet. We show the depth maps predicted
by Depth-LSM (visualized with shading from a shifted viewpoint) and the point cloud obtained by unprojecting
them into world coordinates.

(and the 3D-R2N2 w/pose) and trained it on our generated data (images and voxel grids). Due to the
difference in training data/splits and the implementation, the numbers are not directly comparable
to the ones reported in [5] but we observe similar performance trends. For the 3D-R2N2 w/pose
system, we use the camera pose quaternion as the pose representation and process it through 2 fully
connected layers before concatenating it with the feature passed into the LSTM. Table 1 reports the
mean voxel IoU (across 13 categories) for sequences of {1, 2, 3, 4} views. The accuracy increases
with number of views for all methods but it can be seen that the jump is much less for the R2N2
methods indicating that it already produces a good enough estimate at the beginning but fails to
effectively use multiple views to improve its reconstruction significantly. The R2N2 system with
naively integrated pose fails to improve over the base version, completely ignoring it in favor of
just image-based information. On the other hand, our system, designed specifically to exploit these
geometric multi-view cues improves significantly with more views. Figure 3 shows some example
reconstructions for V-LSM and 3D-R2N2 w/pose. Our system progressively improves based on
the viewpoint it receives while the R2N2 w/pose system makes very confident predictions early on
(sometimes “retrieving" a completely different instance) and then stops improving as much. As we
use a geometric approach, we end up memorizing less and reconstruct when possible. More detailed
results can be found in the supplementary material.

Generalization. In order to test how well LSMs learn to generalize to unseen data, we split our
data into 2 parts with disjoint sets of classes - split 1 has data from 6 classes while split 2 has data
from the other 7. We train three V-LSMs - trained on split 1 (V-LSM-S1), on split 2 (V-LSM-S2) and
both splits combined (V-LSM-All). The quantity we are interested in is the change in performance
when we test the system on a category it hasn’t seen during training. We use the difference in test IoU
of a category C between V-LSM-All and V-LSM-S1 if C is not in split 1 and vice versa. Figure 4
shows the mean of this quantity across all classes as the number of views change. It can be seen that
for a single view, the difference in performance is fairly high and as we see more views, the difference

7



in performance decreases - indicating that our system has learned to exploit category agnostic shape
cues. On the other hand, the 3D-R2N2 w/pose system fails to generalize with more views. Note that
the V-LSMs have been trained with a time horizon of 4 but are evaluated till upto 8 steps here.
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Figure 6: Sensitivity to noise in camera pose estimates
for V-LSM for systems trained with and without pose
perturbation.

Sensitivity to noisy camera pose and masks.
We conducted experiments to quantify the ef-
fects of noisy camera pose and segmentations
on performance for V-LSMs. We evaluated
models trained with perfect poses on data with
perturbed camera extrinsics and observed that
performance degrades (as expected) yet still re-
mains better than the baseline (at 10◦ noise).
We also trained new models with synthetically
perturbed extrinsics and achieve significantly
higher robustness to noisy poses while maintain-
ing competitive performance (Figure 6). This is
illustrated in Figure 6. The perturbation is intro-
duced by generating a random rotation matrix
which rotates the viewing axis by a max angular
magnitude θ while still pointing at the object of
interest.

We also trained LSMs on images with random images backgrounds (V-LSM w/bg in Table 1) rather
than only white backgrounds and saw a very small drop in performance. This shows that our method
learns to match features rather than relying heavily on perfect segmentations.

Multi-view Depth Map Prediction. We show qualitative results from Depth LSM in Figure 5. We
manage to obtain thin structures in challenging examples (chairs/tables) while predicting consistent
geometry for all the views. We note that the skip connections from the image to last layers for D-LSM
do help in directly using low level image features while producing depth maps. The depth maps
are viewed with shading in order to point out that we produce metrically accurate geometry. The
unprojected point clouds also align well with each other showing the merits of jointly predicting the
depth maps from a global volume rather than processing them independently.

Comparision to Plane Sweeping. We qualitatively compare D-LSM to the popular plane sweeping
(PS) approach [6, 57] for stereo matching. Figure 7 shows the unprojected point clouds from per
view depths maps produced using PS and D-LSM using 5 and 10 images. We omit an evaluation with
less images as plane sweeping completely fails with fewer images. We use the publicly available
implementation for the PS algorithm [19] and use 5x5 zero mean normalized cross correlation as
matching windows with 300 depth planes. We can see that our approach is able to produce much
cleaner point clouds with less input images. It is robust to texture-less areas where traditional stereo
algorithms fail (e.g. the car windows) by using shape priors to reason about them. We also conducted
a quantitative comparison using PS and D-LSM with 10 views (D-LSM was trained using only four
images). The evaluation region is limited to a depth range of ±

√
3/2 (maximally possible depth

range) around the origin as the original models lie in a unit cube centered at the origin. Furthermore,
pixels where PS is not able to provide a depth estimate are not taken into account. Note that all these
choices disadvantage our method. We compute the per depth map error as the median absolute depth
difference for the valid pixels, aggregate to a per category mean error and report the average of the
per category means for PS as 0.051 and D-LSM as 0.024. Please refer to the supplementary material
for detailed results.

5 Discussion

We have presented Learnt Stereo Machines (LSM) - an end-to-end learnt system that performs
multi-view stereopsis. The key insight of our system is to use ideas from projective geometry
to differentiably transfer features between 2D images and the 3D world and vice-versa. In our
experiments we showed the benefits of our formulation over direct methods - we are able to generalize
to new object categories and produce compelling reconstructions with fewer images than classical

8



(a) PS 5 Images (b) LSM 5 Images (c) PS 10 Images (d) LSM 10 Images (e) PS 20 Images

Figure 7: Comparison between Depth-LSM and plane sweeping stereo (PS) with varying numbers of images.

systems. However, our system also has some limitations. We discuss some below and describe how
they lead to future work.

A limiting factor in our current system is the coarse resolution (323) of the world grid. Classical
algorithms typically work on much higher resolutions frequently employing special data structures
such as octrees. We can borrow ideas from recent works [43, 21] which show that CNNs can predict
such high resolution volumes. We also plan to apply LSMs to more general geometry than objects,
eventually leading to a system which can reconstruct single/multiple objects and entire scenes. The
main challenge in this setup is to find the right global grid representation. In scenes for example, a
grid in terms of a per-view camera frustum might be more appropriate than a global aligned euclidean
grid.

In our experiments we evaluated classical multi-view 3D reconstruction where the goal is to produce
3D geometry from images with known poses. However, our system is more general and the projection
modules can be used wherever one needs to move between 2D image and 3D world frames. Instead
of predicting just depth maps from our final world representation, one can also predict other view
specific representations such as silhouettes or pixel wise part segmentation labels etc. We can also
project the final world representation into views that we haven’t observed as inputs (we would omit
the skip connections from the image encoder to make the projection unconditional). This can be used
to perform view synthesis grounded in 3D.
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