NIPS Proceedingsβ

A simple model of recognition and recall memory

Part of: Advances in Neural Information Processing Systems 30 (NIPS 2017) pre-proceedings

Pre-Proceedings

[PDF] [BibTeX] [Supplemental] [Reviews]

Authors

Conference Event Type: Poster

Abstract

We show that several striking differences in memory performance between recognition and recall tasks are explained by an ecological bias endemic in classic memory experiments - that such experiments universally involve more stimuli than retrieval cues. We show that while it is sensible to think of recall as simply retrieving items when probed with a cue - typically the item list itself - it is better to think of recognition as retrieving cues when probed with items. To test this theory, by manipulating the number of items and cues in a memory experiment, we show a crossover effect in memory performance within subjects such that recognition performance is superior to recall performance when the number of items is greater than the number of cues and recall performance is better than recognition when the converse holds. We build a simple computational model around this theory, using sampling to approximate an ideal Bayesian observer encoding and retrieving situational co-occurrence frequencies of stimuli and retrieval cues. This model robustly reproduces a number of dissociations in recognition and recall previously used to argue for dual-process accounts of declarative memory.