NIPS Proceedingsβ

Parametric Simplex Method for Sparse Learning

Part of: Advances in Neural Information Processing Systems 30 (NIPS 2017) pre-proceedings


[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Poster


High dimensional sparse learning has imposed a great computational challenge to large scale data analysis. In this paper, we investiage a broad class of sparse learning approaches formulated as linear programs parametrized by a {\em regularization factor}, and solve them by the parametric simplex method (PSM). PSM offers significant advantages over other competing methods: (1) PSM naturally obtains the complete solution path for all values of the regularization parameter; (2) PSM provides a high precision dual certificate stopping criterion; (3) PSM yields sparse solutions through very few iterations, and the solution sparsity significantly reduces the computational cost per iteration. Particularly, we demonstrate the superiority of PSM over various sparse learning approaches, including Dantzig selector for sparse linear regression, sparse support vector machine for sparse linear classification, and sparse differential network estimation. We then provide sufficient conditions under which PSM always outputs sparse solutions such that its computational performance can be significantly boosted. Thorough numerical experiments are provided to demonstrate the outstanding performance of the PSM method.