
Interpretable Nonlinear Dynamic Modeling
of Neural Trajectories

Yuan Zhao and Il Memming Park
Department of Neurobiology and Behavior

Department of Applied Mathematics and Statistics
Institute for Advanced Computational Science

Stony Brook University, NY 11794
{yuan.zhao, memming.park}@stonybrook.edu

Abstract

A central challenge in neuroscience is understanding how neural system imple-
ments computation through its dynamics. We propose a nonlinear time series
model aimed at characterizing interpretable dynamics from neural trajectories.
Our model assumes low-dimensional continuous dynamics in a finite volume. It
incorporates a prior assumption about globally contractional dynamics to avoid
overly enthusiastic extrapolation outside of the support of observed trajectories.
We show that our model can recover qualitative features of the phase portrait such
as attractors, slow points, and bifurcations, while also producing reliable long-
term future predictions in a variety of dynamical models and in real neural data.

1 Introduction

Continuous dynamical systems theory lends itself as a framework for both qualitative and quanti-
tative understanding of neural models [1, 2, 3, 4]. For example, models of neural computation are
often implemented as attractor dynamics where the convergence to one of the attractors represents
the result of computation. Despite the wide adoption of dynamical systems theory in theoretical
neuroscience, solving the inverse problem, that is, reconstructing meaningful dynamics from neural
time series, has been challenging. Popular neural trajectory inference algorithms often assume lin-
ear dynamical systems [5, 6] which lack nonlinear features ubiquitous in neural computation, and
typical approaches of using nonlinear autoregressive models [7, 8] sometimes produce wild extrap-
olations which are not suitable for scientific study aimed at confidently recovering features of the
dynamics that reflects the nature of the underlying computation.

In this paper, we aim to build an interpretable dynamics model to reverse-engineer the neural imple-
mentation of computation. We assume slow continuous dynamics such that the sampled nonlinear
trajectory is locally linear, thus, allowing us to propose a flexible nonlinear time series model that
directly learns the velocity field. Our particular parameterization yields to better interpretations:
identifying fixed points and ghost points are easy, and so is the linearization of the dynamics around
those points for stability and manifold analyses. We further parameterize the velocity field using a
finite number of basis functions, in addition to a global contractional component. These features en-
courage the model to focus on interpolating dynamics within the support of the training trajectories.

2 Model

Consider a general d-dimensional continuous nonlinear dynamical system driven by external input,

ẋ = F (x,u) (1)

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



where x ∈ Rd represent the dynamic trajectory, and F : Rd ×Rdi → Rd fully defines the dynamics
in the presence of input drive u ∈ Rdi . We aim to learn the essential part of the dynamics F from a
collection of trajectories sampled at frequency 1/∆.

Our work builds on extensive literature in nonlinear time series modeling. Assuming a separable, lin-
ear input interaction, F (x,u) = Fx(x)+Fu(x)u, a natural nonlinear extension of an autoregressive
model is to use a locally linear expansion of (1) [7, 9]:

xt+1 = xt +A(xt)xt + b(xt) +B(xt)ut + ϵt (2)

where b(x) = Fx(x)∆, A(x) : Rd → Rd×d is the Jacobian matrix of Fx at x scaled by time step
∆, B(x) : Rd → Rd×di is the linearization of Fu around x, and ϵt denotes model mismatch noise of
order O(∆2). For example, {A,B} are parametrized with a radial basis function (RBF) network in
the multivariate RBF-ARX model of [10, 7], and {A,b,B} are parametrized with sigmoid neural
networks in [9]. Note that A(·) is not guaranteed to be the Jacobian of the dynamical system (1)
since A and b also change with x. In fact, the functional form for A(·) is not unique, and a powerful
function approximator for b(·) makes A(·) redundant and over parameterizes the dynamics.

Note that (2) is a subclass of a general nonlinear model:
xt+1 = f(xt) +B(xt)ut + ϵt, (3)

where f ,B are the discrete time solution of Fx, Fu. This form is widely used, and called nonlinear
autoregressive with eXogenous inputs (NARX) model where f assumes various function forms (e.g.
neural network, RBF network [11], or Volterra series [8]).

We propose to use a specific parameterization,
xt+1 = xt + g(xt) +B(xt)ut + ϵt

g(xt) = Wgφ(xt)− e−τ2

xt

vec(B(xt)) = WBφ(xt)

(4)

where φ(·) is a vector of r continuous basis functions,

φ(·) = (φ1(·), . . . ,φr(·))⊤. (5)
Note the inclusion of a global leak towards the origin whose rate is controlled by τ2. The further
away from the origin (and as τ → 0), the larger the effect of the global contraction. This encodes our
prior knowledge that the neural dynamics are limited to a finite volume of phase space, and prevents
solutions with nonsensical runaway trajectories.

The function g(x) directly represents the velocity field of an underlying smooth dynamics (1), unlike
f(x) in (3) which can have convoluted jumps. We can even run the dynamics backwards in time,
since the time evolution for small ∆ is reversible (by taking g(xt) ≈ g(xt+1)), which is not possible
for (3), since f(x) is not necessarily an invertible function.

Fixed points x∗ satisfy g(x∗) +B(x∗)u = 0 for a constant input u. Far away from the fixed points,
dynamics are locally just a flow (rectification theorem) and largely uninteresting. The Jacobian in
the absence of input, J = ∂g(x)

∂x provides linearization of the dynamics around the fixed points (via
the Hartman-Grobman theorem), and the corresponding fixed point is stable if all eigenvalues of J
are negative.

We can further identify fixed points, and ghost points (resulting from disappearance of fixed points
due to bifurcation) from local minima of ∥g∥ with small magnitude. The flow around the ghost
points can be extremely slow [4], and can exhibit signatures of computation through meta-stable
dynamics [12]. Continuous attractors (such as limit cycles) are also important features of neural dy-
namics which exhibit spontaneous oscillatory modes. We can easily identify attractors by simulating
the model.

3 Estimation

We define the mean squared error as the loss function

L(Wg,WB , c1...r,σ1...r) =
1

T

T−1∑

t=0

∥g(xt) +B(xt)ut + xt − xt+1∥22, (6)

2



where we use normalized squared exponential radial basis functions

φi(z) =
exp

(
−∥z−ci∥2

2

2σ2
i

)

ϵ+
∑r

i=1 exp
(
−∥z−ci∥2

2

2σ2
i

) , (7)

with centers ci and corresponding kernel width σi. The small constant ϵ = 10−7 is to avoid numeri-
cal 0 in the denominator.

We estimate the parameters {Wg,WB , τ, c,σ} by minimizing the loss function through gradient
descent (Adam [13]) implemented within TensorFlow [14]. We initialize the matrices Wg and
WB by truncated standard normal distribution, the centers {ci} by the centroids of the K-means
clustering on the training set, and the kernel width σ by the average euclidean distance between the
centers.

4 Inferring Theoretical Models of Neural Computation

We apply the proposed method to a variety of low-dimensional neural models in theoretical neuro-
science. Each theoretical model is chosen to represent a different mode of computation.

4.1 Fixed point attractor and bifurcation for binary decision-making

Perceptual decision-making and working memory tasks are widely used behavioral tasks where the
tasks typically involve a low-dimensional decision variable, and subjects are close to optimal in their
performance. To understand how the brain implements such neural computation, many competing
theories have been proposed [15, 16, 17, 18, 19, 20, 21]. We implemented the two dimensional
dynamical system from [20] where the final decision is represented by two stable fixed points corre-
sponding to each choice. The stimulus strength (coherence) nonlinearly interacts with the dynamics
(see appendix for details), and biases the choice by increasing the basin of attraction (Fig. 1). We
encode the stimulus strength as a single variable held constant throughout each trajectory as in [20].

The model with 10 basis functions learned the dynamics from 90 training trajectories (30 per coher-
ence c = 0, 0.5,−0.5). We visualize the log-speed as colored contours, and the direction component
of the velocity field as arrows in Fig. 1. The fixed/ghost points are shown as red dots, which ideally
should be at the crossing of the model nullclines given by solid lines. For each coherence, two novel
starting points were simulated from the true model and the estimated model in Fig. 1. Although the
model was trained with only low or moderate coherence levels where there are 2 stable and 1 unsta-
ble fixed points, it predicts bifurcation at higher coherence and it identifies the ghost point (lower
right panel).

We compare the model (4) to the following “locally linear” (LL) model,

xt+1 =A(xt)xt +B(xt)ut + xt

vec(A(xt)) =WAφ(xt)

vec(B(xt)) =WBφ(xt)

(8)

in terms of training and prediction errors in Table 1. Note that there is no contractional term. We
train both models on the same trajectories described above. Then we simulate 30 trajectories from
the true system and trained models for coherence c = 1 with the same random initial states within the
unit square and calculate the mean squared error between the true trajectories and model-simulated
ones as prediction error. The other parameters are set to the same value as training. The LL model

Table 1: Model errors

Model Training error Prediction error: mean (std)

(4) 4.06E-08 0.002 (0.008)
(8) 2.04E-08 0.244 (0.816)

has poor prediction on the test set. This is due to unbounded flow out of the phase space where the
training data lies (see Fig. 6 in the supplement).

3



Figure 1: Wong and Wang’s 2D dynamics model for perceptual decision-making [20]. We train the
model with 90 trajectories (uniformly random initial points within the unit square, 0.5 s duration,
1 ms time step) with different input coherence levels c = {0, 0.5,−0.5} (30 trajectories per coher-
ence). The yellow and green lines are the true nullclines. The black arrows represent the true velocity
fields (direction only) and the red arrows are model-predicted ones. The black and gray circles are
the true stable and unstable fixed points, while the red ones are local minima of model-prediction
(includes fixed points and slow points). The background contours are model-predicted log∥d s

d t ∥2.
We simulated two 1 s trajectories each for true and learned model dynamics. The trajectories start
from the cyan circles. The blue lines are from the true model and the cyan ones are simulated from
trained models. Note that we do not train our model on trajectories from the bottom right condition
(c = 1).

4












