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Abstract

We study the problem of modeling spatiotemporal trajectories over long time
horizons using expert demonstrations. For instance, in sports, agents often choose
action sequences with long-term goals in mind, such as achieving a certain strategic
position. Conventional policy learning approaches, such as those based on Markov
decision processes, generally fail at learning cohesive long-term behavior in such
high-dimensional state spaces, and are only effective when fairly myopic decision-
making yields the desired behavior. The key difficulty is that conventional models
are “single-scale” and only learn a single state-action policy. We instead propose a
hierarchical policy class that automatically reasons about both long-term and short-
term goals, which we instantiate as a hierarchical neural network. We showcase our
approach in a case study on learning to imitate demonstrated basketball trajectories,
and show that it generates significantly more realistic trajectories compared to
non-hierarchical baselines as judged by professional sports analysts.

1 Introduction

Figure 1: The player (green)
has two macro-goals: 1)
pass the ball (orange) and
2) move to the basket.

Modeling long-term behavior is a key challenge in many learning prob-
lems that require complex decision-making. Consider a sports player
determining a movement trajectory to achieve a certain strategic position.
The space of such trajectories is prohibitively large, and precludes conven-
tional approaches, such as those based on simple Markovian dynamics.

Many decision problems can be naturally modeled as requiring high-level,
long-term macro-goals, which span time horizons much longer than the
timescale of low-level micro-actions (cf. He et al. [8], Hausknecht and
Stone [7]). A natural example for such macro-micro behavior occurs in
spatiotemporal games, such as basketball where players execute complex
trajectories. The micro-actions of each agent are to move around the
court and, if they have the ball, dribble, pass or shoot the ball. These
micro-actions operate at the centisecond scale, whereas their macro-goals,
such as "maneuver behind these 2 defenders towards the basket", span
multiple seconds. Figure 1 depicts an example from a professional basketball game, where the player
must make a sequence of movements (micro-actions) in order to reach a specific location on the
basketball court (macro-goal).

Intuitively, agents need to trade-off between short-term and long-term behavior: often sequences of
individually reasonable micro-actions do not form a cohesive trajectory towards a macro-goal. For
instance, in Figure 1 the player (green) takes a highly non-linear trajectory towards his macro-goal of
positioning near the basket. As such, conventional approaches are not well suited for these settings,
as they generally use a single (low-level) state-action policy, which is only successful when myopic
or short-term decision-making leads to the desired behavior.
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In this paper, we propose a novel class of hierarchical policy models, which we instantiate using
recurrent neural networks, that can simultaneously reason about both macro-goals and micro-actions.
Our model utilizes an attention mechanism through which the macro-policy guides the micro-policy.
Our model is further distinguished from previous work on hierarchical policies by dynamically
predicting macro-goals instead of following fixed goals, which gives additional flexibility to our
model class that can be fitted to data (rather than having the macro-goals be specifically hand-crafted).

We showcase our approach in a case study on learning to imitate demonstrated behavior in professional
basketball. Our primary result is that our approach generates significantly more realistic player
trajectories compared to non-hierarchical baselines, as judged by professional sports analysts. We
also provide a comprehensive qualitative and quantitive analysis, e.g., showing that incorporating
macro-goals can actually improve 1-step micro-action prediction accuracy.

2 Related Work

The reinforcement learning community has largely focused on non-hierarchical policies such as those
based on Markovian or linear dynamics (cf. Ziebart et al. [17], Mnih et al. [11], Hausknecht and
Stone [7]). By and large, such policy classes are shown to be effective only when the optimal action
can be found via short-term planning. Previous research has instead focused on issues such as how
to perform effective exploration, plan over parameterized action spaces, or deal with non-convexity
issues from using deep neural networks. In contrast, we focus on developing hierarchical policies that
can effectively generate realistic long-term plans in complex settings such as basketball gameplay.

The use of hierarchical models to decompose macro-goals from micro-actions is relatively common
in the planning community (cf. Sutton et al. [14], He et al. [8], Bai et al. [1]). For instance, the
winning team in 2015 RoboCup Simulation Challenge (Bai et al. [1]) used a manually constructed
hierarchical policy to solve MDPs with a set of fixed sub-tasks, while Konidaris et al. [10] segmented
demonstrations to construct a hierarchy of static macro-goals. In contrast, we study how one can
learn a hierarchical policy from a large amount of expert demonstrations that can adapt its policy in
non-Markovian environments with dynamic macro-goals.

Our approach shares affinity with behavioral cloning. One difference with previous work is that we
do not learn a reward function that induces such behavior (cf. Muelling et al. [12]). Another related
line of research aims to develop efficient policies for factored MDPs (Guestrin et al. [6]), e.g. by
learning value functions over factorized state spaces for multi-agent systems. It may be possible that
such approaches are also applicable for learning our hierarchical policy.

Attention models for deep networks have mainly been applied to natural language processing, image
recognition and combinations thereof (Xu et al. [15]). In contrast to previous work which focuses on
attention models of the input, our attention model is applied to the output by integrating control from
both the macro-policy and the micro-policy.

Recent work on generative models for sequential data (Chung et al. [4]), such as handwriting
generation, have combined latent variables with an RNN’s hidden state to capture temporal variability
in the input. In our work, we instead aim to learn semantically meaningful latent variables that are
external to the RNN and reason about long-term behavior and goals.

Our model shares conceptual similarities to the Dual Process framework (Evans and Stanovich
[5]), which decomposes cognitive processes into fast, unconscious behavior (System 1) and slow,
conscious behavior (System 2). This separation reflects our policy decomposition into a macro and
micro part. Other related work in neuroscience and cognitive science include hierarchical models of
learning by imitation (Byrne and Russon [2]).

3 Long-Term Trajectory Planning

We are interested in learning policies that can produce high quality trajectories, where quality is some
global measure of the trajectory (e.g., realistic trajectories as in Figure 1). We first set notation:

• At time t, an agent i is in state sit ∈ S and takes action ait ∈ A. The full state and action are
st =

{
sit
}

players i, at =
{
ait
}

players i. The history of events is ht = {(su, au)}0≤u<t.
• Macro policies also use a goal space G, e.g. regions in the court that a player should reach.
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Figure 3: The general structure of a 2-level hierarchical policy that consists of 1) a raw micro-policy πraw 2) a
macro-policy πmacro and 3) a transfer function φ. For clarity, we suppressed the indices i, t in the image. The
raw micro-policy learns optimal short-term policies, while the macro-policy is optimized to achieve long-term
rewards. The macro-policy outputs a macro-goal git = πmacro(s

i
t, h

i
t), which guides the raw micro-policy

ui
t = πraw(sit, h

i
t) in order for the hierarchical policy πmicro to achieve a long-term goal git. The hierarchical

policy πmicro = ψ(ui
t, φ(git)) uses a transfer function φ and synthesis functon ψ, see (3) and Section 4.

• Let π(st, ht) denote a policy that maps state and history to a distribution over actions
P (at|st, ht). If π is deterministic, the distribution is peaked around a specific action. We
also abuse notation to sometimes refer to π as deterministically taking the most probable
action π(st, ht) = argmaxa∈AP (a|st, ht) – this usage should be clear from context.

Our main research question is how to design a policy class that can capture the salient properties of
how expert agents execute trajectories. In particular, we present a general policy class that utilizes
a goal space G to guide its actions to create such trajectory histories. We show in Section 4 how to
instantiate this policy class as a hierarchical network that uses an attention mechanism to combine
macro-goals and micro-actions. In our case study on modeling basketball behavior (Section 5.1), we
train such a policy to imitate expert demonstrations using a large dataset of tracked basketball games.

3.1 Incorporating Macro-Goals

Figure 2: Depicting
two macro-goals (blue
boxes) as an agent
moves to the top left.

Our main modeling assumption is that a policy should simultaneously optimize
behavior hierarchically on multiple well-separated timescales. We consider
two distinct timescales (macro and micro-level), although our approach could
in principle be generalized to even more timescales. During an episode [t0, t1],
an agent i executes a sequence of micro-actions

(
ait
)
t≥0

that leads to a macro-
goal git ∈ G. We do not assume that the start and end times of an episode
are fixed. For instance, macro-goals can change before they are reached. We
finally assume that macro-goals are relatively static on the timescale of the
micro-actions, that is: dgit/dt� 1.

Figure 2 depicts an example of an agent with two unique macro-goals over a
50-frame trajectory. At every timestep t, the agent executes a micro-action ait,
while the macro-goals git change more slowly.

We model the interaction between a micro-action ait and a macro-goal git through a raw micro-action
uit ∈ A that is independent of the macro-goal. The micro-policy is then defined as:

ait = πmicro(st, ht) = argmaxaP
micro(a|st, ht) (1)

Pmicro(ait|st, ht) =

∫
dudgP (ait|u, g, st, ht)P (u, g|st, ht). (2)

Here, we model the conditional distribution P (ait|u, g, st, ht) as a non-linear function of u, g:

P (ait|uit, git, st, ht) = ψ(uit, φ(git)), (3)
where φ, ψ are transfer and synthesis functions respectively that we make explicit in Section 4. Note
that (3) does not explicitly depend on st, ht: although it is straightforward to generalize, this did not
make a significant difference in our experiments. This decomposition is shown in Figure 3 and can
be generalized to multiple scales l using multiple macro-goals gl and transfer functions φl.

4 Hierarchical Policy Network

Figure 3 depicts a high-level overview of our hierarchical policy class for generating long-term
spatiotemporal trajectories. Both the raw micro-policy and macro-policy are instantiated as recurrent
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convolutional neural networks, and the raw action and macro-goals are combined via an attention
mechanism, which we elaborate on below.

Discretization and deep neural architecture. In general, when using continuous latent variables
g, learning the model (1) is intractable, and one must resort to approximation methods. We choose
to discretize the state-action and latent spaces. In the basketball setting, a state sit ∈ S is naturally
represented as a 1-hot occupancy vector of the basketball court. We then pose goal states git as
sub-regions of the court that i wants to reach, defined at a coarser resolution than S. As such, we
instantiate the macro and micro-policies as convolutional recurrent neural networks, which can
capture both predictive spatial patterns and non-Markovian temporal dynamics.

Attention mechanism for integrating macro-goals and micro-actions. We model (3) as an atten-
tion, i.e. φ computes a softmax density φ(git), over the output action spaceA and ψ is an element-wise
(Hadamard) product. Suppressing indices i, t and s, h for clarity, the distribution (3) becomes

φk(g) =
exphφ(g)k∑
j exphφ(g)j

, P (ak|u, g) ∝ P raw(uk|s, h) · φk(g), k = 1 . . . |A|, (4)

where hφ(g) is computed by a neural network that takes Pmacro(g) as an input. Intuitively, this
structure captures the trade-off between the macro- and raw micro-policy. On the one hand, the
raw micro-policy πraw aims for short-term optimality. On the other hand, the macro-policy πmacro
can attend via φ to sequences of actions that lead to a macro-goal and bias the agent towards good
long-term behavior. The difference between u and φ(g) thus reflects the trade-off that the hierarchical
policy learns between actions that are good for either short-term or long-term goals.

Multi-stage learning. Given a set D of sequences of state-action tuples (st, ât), where the ât are
1-hot labels (omitting the index i for clarity), the hierarchical policy network can be trained via

θ∗ = argmin
θ

∑
D

T∑
t=1

Lt(st, ht, ât; θ). (5)

Given the hierarchical structure of our model class, we decompose the loss Lt (omitting the index t):

L(s, h, â; θ) = Lmacro (s, h, g; θ) + Lmicro (s, h, â; θ) +R(θ), (6)

Lmicro(s, h, â; θ) =

A∑
k=1

âk log [P raw(uk|s, h; θ) · φk(g; θ)] , (7)

where Rt(θ) regularizes the model weights θ and k indexes A discrete action-values. Although we
have ground truths ât for the observable micro-actions, in general we may not have labels for the
macro-goals gt that induce optimal long-term planning. As such, one would have to appeal to separate
solution methods to compute the posterior P (gt|st, ht) which minimizes Lt,macro (st, ht, gt; θ).

To reduce complexity and given the non-convexity of (7), we instead follow a multi-stage learning
approach with a set of weak labels ĝt, φ̂t for the macro-goals gt and attention masks φt = φ(gt).
We assume access to such weak labels and only use them in the initial training phases. Here, we
first train the raw micro-policy, macro-policy and attention individually, freezing the other parts of
the network. The policies πmicro, πmacro and attention φ can be trained using standard cross-entropy
minimization with the labels ât, ĝt and φ̂t, respectively. In the final stage we fine-tune the entire
network on objective (5), using only Lt,micro andR. We found this approach capable of finding a good
initialization for fine-tuning and generating high-quality long-term trajectories.1 Another advantage
of this approach is that the network can be trained using gradient descent during all stages.

5 Case Study on Modeling Basketball Behavior

We applied our approach to modeling basketball behavior data. In particular, we focus on imitating
the players’ movements, which is a challenging problem in the spatiotemporal planning setting.

1As ut and φ(gt) enter symmetrically into the objective (7), it is hypothetically possible that the network
converges to a symmetric phase where the predictions ut and φ(gt) become identical along the entire trajectory.
However, our experiments suggest that our multi-stage learning approach separates timescales well between the
micro- and macro policy and prevents the network from settling in such a redundant symmetric phase.
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Figure 4: Network architecture and hyperparameters of the hierarchical policy network. For clarity, we
suppressed the indices i, t in the image. Max-pooling layers (numbers indicate kernel size) with unit stride
upsample the sparse tracking data st. The policies πraw, πmacro use a convolutional (kernel size, stride) and GRU
memory (number of cells) stack to predict ui

t and git. Batch-normalization "bn" (Ioffe and Szegedy [9]) is applied
to stabilize training. The output attention φ is implemented by 2 fully-connected layers (number of output units).
Finally, the network predicts the final output πmicro(st, ht) = πraw(st, ht) � φ(git).

5.1 Experimental Setup

We validated the hierarchical policy network (HPN) by learning a movement policy of individual
basketball players that predicts as the micro-action the instantaneous velocity vit = πmicro(st, ht).

Training data. We trained the HPN on a large dataset of tracking data from professional basketball
games (Yue et al. [16]). The dataset consists of possessions of variable length: each possession is
a sequence of tracking coordinates sit =

(
xit, y

i
t

)
for each player i, recorded at 25 Hz, where one

team has continuous possession of the ball. Since possessions last between 50 and 300 frames, we
sub-sampled every 4 frames and used a fixed input sequence length of 50 to make training feasible.
Spatially, we discretized the left half court using 400×380 cells of size 0.25ft× 0.25ft. For simplicity,
we modeled every player identically using a single policy network. The resulting input data for each
possession is grouped into 4 channels: the ball, the player’s location, his teammates, and the opposing
team. After this pre-processing, we extracted 130,000 tracks for training and 13,000 as a holdout set.

Labels. We extracted micro-action labels v̂it = sit+1 − sit as 1-hot vectors in a grid of 17× 17 unit
cells. Additionally, we constructed a set of weak macro-labels ĝt, φ̂t by heuristically segmenting
each track using its stationary points. The labels ĝt were defined as the next stationary point. For φ̂t,
we used 1-hot velocity vectors vit,straight along the straight path from the player’s location sit to the
macro-goal git. We refer to the supplementary material for additional details.

Model hyperparameters. To generate smooth rollouts while sub-sampling every 4 frames, we
simultaneously predicted the next 4 micro-actions at, . . . , at+3. A more general approach would
model the dependency between look-ahead predictions as well, e.g. P (πt+∆+1|πt+∆). However, we
found that this variation did not outperform baseline models. We selected a network architecture to
balance performance and feasible training-time. The macro and micro-policy use GRU memory cells
Chung et al. [3] and a memory-less 2-layer fully-connected network as the transfer function φ, as
depicted in Figure 4. We refer to the supplementary material for more details.

Baselines. We compared the HPN against two natural baselines.

1. A policy with only a raw micro-policy and memory (GRU-CNN) and without memory (CNN).
2. A hierarchical policy network H-GRU-CNN-CC without an attention mechanism, which

instead learns the final output from a concatenation of the raw micro- and macro-policy.

Rollout evaluation. To evaluate the quality of our model, we generated rollouts (st;h0,r0) with burn-
in period r0, These are generated by 1) feeding a ground truth sequence of states h0,r0 = (s0, . . . , sr0)
to the policy network and 2) for t > r0, predicting at as the mode of the network output (1) and
updating the game-state st → st+1, using ground truth locations for the other agents.

5.2 How Realistic are the Generated Trajectories?

The most holistic way to evaluate the trajectory rollouts is via visual analysis. Simply put, would a
basketball expert find the rollouts by HPN more realistic than those by the baselines? We begin by
first visually analyzing some rollouts, and then present our human preference study results.
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(a) HPN rollouts (b) HPN rollouts (c) HPN rollouts (d) HPN (top) and
failure case (bottom)

(e) HPN (top), base-
line (bottom)

Figure 5: Rollouts generated by the HPN (columns a, b, c, d) and baselines (column e). Each frame shows
an offensive player (dark green), a rollout (blue) track that extrapolates after 20 frames, the offensive team
(light green) and defenders (red). Note we do not show the ball, as we did not use semantic basketball features
(i.e “currently has the ball") during training. The HPN rollouts do not memorize training tracks (column a) and
display a variety of natural behavior, such as curving, moving towards macro-goals and making sharp turns
(c, bottom). We also show a failure case (d, bottom), where the HPN behaves unnaturally by moving along a
straight line off the right side of the court – which may be fixable by adding semantic game state information.
For comparison, a hierarchical baseline without an attention model, produces a straight-line rollout (column e,
bottom), whereas the HPN produces a more natural movement curve (column e, top).

Model comparison Experts Non-Experts All
W/T/L Avg Gain W/T/L Avg Gain W/T/L Avg Gain

VS-CNN 21 / 0 / 4 0.68 15 / 9 / 1 0.56 21 / 0 / 4 0.68
VS-GRU-CNN 21 / 0 / 4 0.68 18 / 2 / 5 0.52 21 / 0 / 4 0.68
VS-H-GRU-CNN-CC 22 / 0 / 3 0.76 21 / 0 / 4 0.68 21 / 0 / 4 0.68
VS-GROUND TRUTH 11 / 0 / 14 -0.12 10 / 4 / 11 -0.04 11 / 0 / 14 -0.12

Table 1: Preference study results. We asked basketball experts and knowledgeable non-experts to judge the
relative quality of policy rollouts. We compare HPN with ground truth and 3 baselines: a memory-less (CNN )
and memory-full (GRU-CNN ) micro-policy and a hierarchical policy without attention (GRU-CNN -CC). For
each of 25 test cases, HPN wins if more judges preferred the HPN rollout over a competitor. Average gain is
the average signed vote (1 for always preferring HPN , and -1 for never preferring). We see that the HPN is
preferred over all baselines (all results against baselines are significant at the 95% confidence level). Moreover,
HPN is competitive with ground truth, indicating that HPN generates realistic trajectories within our rollout
setting. Please see the supplementary material for more details.

Visualization. Figure 5 depicts example rollouts for our HPN approach and one example rollout for
a baseline. Every rollout consists of two parts: 1) an initial ground truth phase from the holdout set
and 2) a continuation by either the HPN or ground truth. We note a few salient properties. First, the
HPN does not memorize tracks, as the rollouts differ from the tracks it has trained on. Second, the
HPN generates rollouts with a high dynamic range, e.g. they have realistic curves, sudden changes of
directions and move over long distances across the court towards macro-goals. For instance, HPN
tracks do not move towards macro-goals in unrealistic straight lines, but often take a curved route,
indicating that the policy balances moving towards macro-goals with short-term responses to the
current state (see also Figure 6b). In contrast, the baseline model often generates more constrained
behavior, such as moving in straight lines or remaining stationary for long periods of time.

Human preference study. Our primary empirical result is a preference study eliciting judgments on
the relative quality of rollout trajectories between HPN and baselines or ground truth. We recruited
seven experts (professional sports analysts) and eight knowledgeable non-experts (e.g., college
basketball players) as judges.
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(a) Predicted distributions for attention masks φ(g)
(left column), velocity (micro-action) πmicro (middle)
and weighted velocity φ(g) � πmicro (right) for basket-
ball players. The center corresponds to 0 velocity.

(b) Rollout tracks and predicted macro-goals gt (blue
boxes). The HPN starts the rollout after 20 frames.
Macro-goal box intensity corresponds to relative pre-
diction frequency during the trajectory.

Figure 6: Left: Visualizing how the attention mask generated from the macro-policy interacts with the micro-
policy πmicro. Row 1 and 2: the micro-policy πmicro decides to stay stationary, but the attention φ goes to the left.
The weighted result φ� πmicro is to move to the left, with a magnitude that is the average. Row 3) πmicro wants to
go straight down, while φ boosts the velocity so the agent bends to the bottom-left. Row 4) πmicro goes straight
up, while φ goes left: the agent goes to the top-left. Row 5) πmicro remains stationary, but φ prefers to move in
any direction. As a result, the agent moves down. Right: The HPN dynamically predicts macro-goals and guides
the micro-policy in order to reach them. The macro-goal predictions are stable over a large number of timesteps.
The HPN sometimes predicts inconsistent macro-goals. For instance, in the bottom right frame, the agent moves
to the top-left, but still predicts the macro-goal to be in the bottom-left sometimes.

Because all the learned policies perform better with a “burn-in” period, we first animated with the
ground truth for 20 frames (after subsampling), and then extrapolated with a policy for 30 frames.
During extrapolation, the other nine players do not animate.2 For each test case, the judges were
shown an animation of two rollout extrapolations of a specific player’s movement: one generated by
the HPN, the other by a baseline or ground truth. The judges then chose which rollout looked more
realistic. Please see the supplementary material for details of the study.

Table 1 shows the preference study results. We tested 25 scenarios (some corresponding to scenarios
in Figure 6b). HPN won the vast majority of comparisons against the baselines using expert judges,
with slightly weaker but still very positive results using non-expert judgments. HPN was also
competitive with ground truth. These results suggest that HPN can generate high-quality player
trajectories that are significant improvements over baselines, and approach the ground truth quality in
this comparison setting.

5.3 Analyzing Macro- and Micro-policy Integration

Our model integrates the macro- and micro-policy by converting the macro-goal into an attention mask
on the micro-action output space, which intuitively guides the micro-policy towards the macro-goal.
We now inspect our macro-policy and attention mechanism to verify this behavior.

Figure 6a depicts how the macro-policy πmacro guides the micro-policy πmicro through the attention φ,
by attending to the direction in which the agent can reach the predicted macro-goal. The attention
model and micro-policy differ in semantic behavior: the attention favors a wider range of velocities
and larger magnitudes, while the micro-policy favors smaller velocities.

2We chose this preference study design to focus the qualitative comparison on the plausibility of individual
movements (e.g. how players might practice alone), as opposed to strategically coordinated team movements.
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Model ∆ = 0 ∆ = 1 ∆ = 2 ∆ = 3 Macro-goals g Attention φ
CNN 21.8% 21.5% 21.7% 21.5% - -
GRU-CNN 25.8% 25.0% 24.9% 24.4% - -
H-GRU-CNN-CC 31.5% 29.9% 29.5% 29.1% 10.1% -
H-GRU-CNN-STACK 26.9% 25.7% 25.9% 24.9% 9.8% -
H-GRU-CNN-ATT 33.7% 31.6% 31.0% 30.5% 10.5% -
H-GRU-CNN-AUX 31.6% 30.7% 29.4% 28.0% 10.8% 19.2%

Table 2: Benchmark Evaluations. ∆-step look-ahead prediction accuracy for micro-actions ait+∆ = π(st)
on a holdout set, with ∆ = 0, 1, 2, 3. H-GRU-CNN-STACK is an HPN where predictions are organized in a
feed-forward stack, with π(st)t feeding into π(st)t+1. Using attention (H-GRU-CNN-ATT) improves on all
baselines in micro-action prediction. All hierarchical models are pre-trained, but not fine-tuned, on macro-goals
ĝ. We report prediction accuracy on the weak labels ĝ, φ̂ for hierarchical models.H-GRU-CNN-AUX is an HPN
that was trained using φ̂. As φ̂ optimizes for optimal long-term behavior, this lowers the micro-action accuracy.

Figure 6b depicts predicted macro-goals by HPN along with rollout tracks. In general, we see that the
rollouts are guided towards the predicted macro-goals. However, we also observe that the HPN makes
some inconsistent macro-goal predictions, which suggests there is still room for improvement.

5.4 Benchmark Analysis

We finally evaluated using a number of benchmark experiments, with results shown in Table 2. These
experiments measure quantities that are related to overall quality, albeit not holistically. We first
evaluated the 4-step look-ahead accuracy of the HPN for micro-actions ait+∆,∆ = 0, 1, 2, 3. On this
benchmark, the HPN outperforms all baseline policy networks when not using weak labels φ̂ to train
the attention mechanism, which suggests that using a hierarchical model can noticeably improve the
short-term prediction accuracy over non-hierarchical baselines.

We also report the prediction accuracy on weak labels ĝ, φ̂, although they were only used during pre-
training, and we did not fine-tune for accuracy on them. Using weak labels one can tune the network
for both long-term and short-term planning, whereas all non-hierarchical baselines are optimized
for short-term planning only. Including the weak labels φ̂ can lower the accuracy on short-term
prediction, but increases the quality of the on-policy rollouts. This trade-off can be empirically set by
tuning the number of weak labels used during pre-training.

6 Limitations and Future Work

We have presented a hierarchical memory network for generating long-term spatiotemporal trajec-
tories. Our approach simultaneously models macro-goals and micro-actions and integrates them
using a novel attention mechanism. We demonstrated significant improvement over non-hierarchical
baselines in a case study on modeling basketball player behavior.

There are several notable limitations to our HPN model. First, we did not consider all aspects of
basketball gameplay, such as passing and shooting. We also modeled all players using a single policy
whereas in reality player behaviors vary (although the variability can be low-dimensional (Yue et al.
[16])). We only modeled offensive players: an interesting direction is modeling defensive players and
integrating adversarial reinforcement learning (Panait and Luke [13]) into our approach. These issues
limited the scope of our preference study, and it would be interesting to consider extended settings.

In order to focus on the HPN model class, we only used the imitation learning setting. More broadly,
many planning problems require collecting training data via exploration (Mnih et al. [11]), which can
be more challenging. One interesting scenario is having two adversarial policies learn to be strategic
against each other through repeatedly game-play in a basketball simulator. Furthermore, in general it
can be difficult to acquire the appropriate weak labels to initialize the macro-policy training.

From a technical perspective, using attention in the output space may be applicable to other architec-
tures. More sophisticated applications may require multiple levels of output attention masking.

Acknowledgments. This research was supported in part by NSF Award #1564330, and a GPU donation (Tesla
K40 and Titan X) by NVIDIA.
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