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Abstract

In this paper, we study the stochastic combinatorial multi-armed bandit (CMAB)
framework that allows a general nonlinear reward function, whose expected value
may not depend only on the means of the input random variables but possibly
on the entire distributions of these variables. Our framework enables a much
larger class of reward functions such as the max() function and nonlinear utility
functions. Existing techniques relying on accurate estimations of the means of
random variables, such as the upper confidence bound (UCB) technique, do not
work directly on these functions. We propose a new algorithm called stochastically
dominant confidence bound (SDCB), which estimates the distributions of under-
lying random variables and their stochastically dominant confidence bounds. We
prove that SDCB can achieve O(log T ) distribution-dependent regret and Õ(

√
T )

distribution-independent regret, where T is the time horizon. We apply our results
to the K-MAX problem and expected utility maximization problems. In particular,
for K-MAX, we provide the first polynomial-time approximation scheme (PTAS)
for its offline problem, and give the first Õ(

√
T ) bound on the (1−ε)-approximation

regret of its online problem, for any ε > 0.

1 Introduction

Stochastic multi-armed bandit (MAB) is a classical online learning problem typically specified as a
player against m machines or arms. Each arm, when pulled, generates a random reward following an
unknown distribution. The task of the player is to select one arm to pull in each round based on the
historical rewards she collected, and the goal is to collect cumulative reward over multiple rounds as
much as possible. In this paper, unless otherwise specified, we use MAB to refer to stochastic MAB.

MAB problem demonstrates the key tradeoff between exploration and exploitation: whether the
player should stick to the choice that performs the best so far, or should try some less explored
alternatives that may provide better rewards. The performance measure of an MAB strategy is its
cumulative regret, which is defined as the difference between the cumulative reward obtained by
always playing the arm with the largest expected reward and the cumulative reward achieved by the
learning strategy. MAB and its variants have been extensively studied in the literature, with classical
results such as tight Θ(log T ) distribution-dependent and Θ(

√
T ) distribution-independent upper and

lower bounds on the regret in T rounds [19, 2, 1].

An important extension to the classical MAB problem is combinatorial multi-armed bandit (CMAB).
In CMAB, the player selects not just one arm in each round, but a subset of arms or a combinatorial
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object in general, referred to as a super arm, which collectively provides a random reward to the
player. The reward depends on the outcomes from the selected arms. The player may observe partial
feedbacks from the selected arms to help her in decision making. CMAB has wide applications
in online advertising, online recommendation, wireless routing, dynamic channel allocations, etc.,
because in all these settings the action unit is a combinatorial object (e.g. a set of advertisements, a
set of recommended items, a route in a wireless network, and an allocation between channels and
users), and the reward depends on unknown stochastic behaviors (e.g. users’ click through behaviors,
wireless transmission quality, etc.). Therefore CMAB has attracted a lot of attention in online learning
research in recent years [12, 8, 22, 15, 7, 16, 18, 17, 23, 9].

Most of these studies focus on linear reward functions, for which the expected reward for playing a
super arm is a linear combination of the expected outcomes from the constituent base arms. Even for
studies that do generalize to non-linear reward functions, they typically still assume that the expected
reward for choosing a super arm is a function of the expected outcomes from the constituent base
arms in this super arm [8, 17]. However, many natural reward functions do not satisfy this property.
For example, for the function max(), which takes a group of variables and outputs the maximum one
among them, its expectation depends on the full distributions of the input random variables, not just
their means. Function max() and its variants underly many applications. As an illustrative example,
we consider the following scenario in auctions: the auctioneer is repeatedly selling an item to m
bidders; in each round the auctioneer selects K bidders to bid; each of the K bidders independently
draws her bid from her private valuation distribution and submits the bid; the auctioneer uses the
first-price auction to determine the winner and collects the largest bid as the payment.1 The goal of
the auctioneer is to gain as high cumulative payments as possible. We refer to this problem as the
K-MAX bandit problem, which cannot be effectively solved in the existing CMAB framework.

Beyond the K-MAX problem, many expected utility maximization (EUM) problems are studied
in stochastic optimization literature [27, 20, 21, 4]. The problem can be formulated as maximizing
E[u(

∑
i∈S Xi)] among all feasible sets S, where Xi’s are independent random variables and u(·) is

a utility function. For example, Xi could be the random delay of edge ei in a routing graph, S is a
routing path in the graph, and the objective is maximizing the utility obtained from any routing path,
and typically the shorter the delay, the larger the utility. The utility function u(·) is typically nonlinear
to model risk-averse or risk-prone behaviors of users (e.g. a concave utility function is often used to
model risk-averse behaviors). The non-linear utility function makes the objective function much more
complicated: in particular, it is no longer a function of the means of the underlying random variables
Xi’s. When the distributions of Xi’s are unknown, we can turn EUM into an online learning problem
where the distributions of Xi’s need to be learned over time from online feedbacks, and we want to
maximize the cumulative reward in the learning process. Again, this is not covered by the existing
CMAB framework since only learning the means of Xi’s is not enough.

In this paper, we generalize the existing CMAB framework with semi-bandit feedbacks to handle
general reward functions, where the expected reward for playing a super arm may depend more
than just the means of the base arms, and the outcome distribution of a base arm can be arbitrary.
This generalization is non-trivial, because almost all previous works on CMAB rely on estimating
the expected outcomes from base arms, while in our case, we need an estimation method and an
analytical tool to deal with the whole distribution, not just its mean. To this end, we turn the problem
into estimating the cumulative distribution function (CDF) of each arm’s outcome distribution. We
use stochastically dominant confidence bound (SDCB) to obtain a distribution that stochastically
dominates the true distribution with high probability, and hence we also name our algorithm SDCB.
We are able to show O(log T ) distribution-dependent and Õ(

√
T ) distribution-independent regret

bounds in T rounds. Furthermore, we propose a more efficient algorithm called Lazy-SDCB, which
first executes a discretization step and then applies SDCB on the discretized problem. We show that
Lazy-SDCB also achieves Õ(

√
T ) distribution-independent regret bound. Our regret bounds are

tight with respect to their dependencies on T (up to a logarithmic factor for distribution-independent
bounds). To make our scheme work, we make a few reasonable assumptions, including boundedness,
monotonicity and Lipschitz-continuity2 of the reward function, and independence among base arms.
We apply our algorithms to the K-MAX and EUM problems, and provide efficient solutions with
concrete regret bounds. Along the way, we also provide the first polynomial time approximation

1We understand that the first-price auction is not truthful, but this example is only for illustrative purpose for
the max() function.

2The Lipschitz-continuity assumption is only made for Lazy-SDCB. See Section 4.
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scheme (PTAS) for the offline K-MAX problem, which is formulated as maximizing E[maxi∈S Xi]
subject to a cardinality constraint |S| ≤ K, where Xi’s are independent nonnegative random
variables.

To summarize, our contributions include: (a) generalizing the CMAB framework to allow a general
reward function whose expectation may depend on the entire distributions of the input random
variables; (b) proposing the SDCB algorithm to achieve efficient learning in this framework with
near-optimal regret bounds, even for arbitrary outcome distributions; (c) giving the first PTAS for the
offline K-MAX problem. Our general framework treats any offline stochastic optimization algorithm
as an oracle, and effectively integrates it into the online learning framework.

Related Work. As already mentioned, most relevant to our work are studies on CMAB frameworks,
among which [12, 16, 18, 9] focus on linear reward functions while [8, 17] look into non-linear
reward functions. In particular, Chen et al. [8] look at general non-linear reward functions and Kveton
et al. [17] consider specific non-linear reward functions in a conjunctive or disjunctive form, but
both papers require that the expected reward of playing a super arm is determined by the expected
outcomes from base arms.

The only work in combinatorial bandits we are aware of that does not require the above assumption on
the expected reward is [15], which is based on a general Thompson sampling framework. However,
they assume that the joint distribution of base arm outcomes is from a known parametric family within
known likelihood function and only the parameters are unknown. They also assume the parameter
space to be finite. In contrast, our general case is non-parametric, where we allow arbitrary bounded
distributions. Although in our known finite support case the distribution can be parametrized by
probabilities on all supported points, our parameter space is continuous. Moreover, it is unclear how
to efficiently compute posteriors in their algorithm, and their regret bounds depend on complicated
problem-dependent coefficients which may be very large for many combinatorial problems. They
also provide a result on the K-MAX problem, but they only consider Bernoulli outcomes from base
arms, much simpler than our case where general distributions are allowed.

There are extensive studies on the classical MAB problem, for which we refer to a survey by Bubeck
and Cesa-Bianchi [5]. There are also some studies on adversarial combinatorial bandits, e.g. [26, 6].
Although it bears conceptual similarities with stochastic CMAB, the techniques used are different.

Expected utility maximization (EUM) encompasses a large class of stochastic optimization problems
and has been well studied (e.g. [27, 20, 21, 4]). To the best of our knowledge, we are the first to study
the online learning version of these problems, and we provide a general solution to systematically
address all these problems as long as there is an available offline (approximation) algorithm. The
K-MAX problem may be traced back to [13], where Goel et al. provide a constant approximation
algorithm to a generalized version in which the objective is to choose a subset S of cost at most K
and maximize the expectation of a certain knapsack profit.

2 Setup and Notation

Problem Formulation. We model a combinatorial multi-armed bandit (CMAB) problem as a tuple
(E,F , D,R), where E = [m] = {1, 2, . . . ,m} is a set of m (base) arms, F ⊆ 2E is a set of subsets
of E, D is a probability distribution over [0, 1]m, and R is a reward function defined on [0, 1]m ×F .
The arms produce stochastic outcomes X = (X1, X2, . . . , Xm) drawn from distribution D, where
the i-th entry Xi is the outcome from the i-th arm. Each feasible subset of arms S ∈ F is called a
super arm. Under a realization of outcomes x = (x1, . . . , xm), the player receives a reward R(x, S)
when she chooses the super arm S to play. Without loss of generality, we assume the reward value to
be nonnegative. Let K = maxS∈F |S| be the maximum size of any super arm.

Let X(1), X(2), . . . be an i.i.d. sequence of random vectors drawn from D, where X(t) =

(X
(t)
1 , . . . , X

(t)
m ) is the outcome vector generated in the t-th round. In the t-th round, the player

chooses a super arm St ∈ F to play, and then the outcomes from all arms in St, i.e., {X(t)
i | i ∈ St},

are revealed to the player. According to the definition of the reward function, the reward value in the
t-th round is R(X(t), St). The expected reward for choosing a super arm S in any round is denoted
by rD(S) = EX∼D[R(X,S)].
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We also assume that for a fixed super arm S ∈ F , the reward R(x, S) only depends on the revealed
outcomes xS = (xi)i∈S . Therefore, we can alternatively express R(x, S) as RS(xS), where RS is a
function defined on [0, 1]S .3

A learning algorithm A for the CMAB problem selects which super arm to play in each round
based on the revealed outcomes in all previous rounds. Let SAt be the super arm selected by A
in the t-th round.4 The goal is to maximize the expected cumulative reward in T rounds, which
is E

[∑T
t=1R(X(t), SAt )

]
=
∑T
t=1 E

[
rD(SAt )

]
. Note that when the underlying distribution D is

known, the optimal algorithmA∗ chooses the optimal super arm S∗ = argmaxS∈F{rD(S)} in every
round. The quality of an algorithm A is measured by its regret in T rounds, which is the difference
between the expected cumulative reward of the optimal algorithm A∗ and that of A:

RegAD(T ) = T · rD(S∗)−
T∑
t=1

E
[
rD(SAt )

]
.

For some CMAB problem instances, the optimal super arm S∗ may be computationally hard to find
even when the distribution D is known, but efficient approximation algorithms may exist, i.e., an
α-approximate (0 < α ≤ 1) solution S′ ∈ F which satisfies rD(S′) ≥ α ·maxS∈F{rD(S)} can be
efficiently found given D as input. We will provide the exact formulation of our requirement on such
an α-approximation computation oracle shortly. In such cases, it is not fair to compare a CMAB
algorithm A with the optimal algorithm A∗ which always chooses the optimal super arm S∗. Instead,
we define the α-approximation regret of an algorithm A as

RegAD,α(T ) = T · α · rD(S∗)−
T∑
t=1

E
[
rD(SAt )

]
.

As mentioned, almost all previous work on CMAB requires that the expected reward rD(S) of
a super arm S depends only on the expectation vector µ = (µ1, . . . , µm) of outcomes, where
µi = EX∼D[Xi]. This is a strong restriction that cannot be satisfied by a general nonlinear function
RS and a general distribution D. The main motivation of this work is to remove this restriction.

Assumptions. Throughout this paper, we make several assumptions on the outcome distribution D
and the reward function R.
Assumption 1 (Independent outcomes from arms). The outcomes from all m arms are mutually
independent, i.e., for X ∼ D, X1, X2, . . . , Xm are mutually independent. We write D as D =
D1 ×D2 × · · · ×Dm, where Di is the distribution of Xi.

We remark that the above independence assumption is also made for past studies on the offline EUM
and K-MAX problems [27, 20, 21, 4, 13], so it is not an extra assumption for the online learning case.
Assumption 2 (Bounded reward value). There exists M > 0 such that for any x ∈ [0, 1]m and any
S ∈ F , we have 0 ≤ R(x, S) ≤M .
Assumption 3 (Monotone reward function). If two vectors x, x′ ∈ [0, 1]m satisfy xi ≤ x′i (∀i ∈ [m]),
then for any S ∈ F , we have R(x, S) ≤ R(x′, S).

Computation Oracle for Discrete Distributions with Finite Supports. We require that there
exists an α-approximation computation oracle (0 < α ≤ 1) for maximizing rD(S), when each Di

(i ∈ [m]) has a finite support. In this case, Di can be fully described by a finite set of numbers
(i.e., its support {vi,1, vi,2, . . . , vi,si} and the values of its cumulative distribution function (CDF)
Fi on the supported points: Fi(vi,j) = PrXi∼Di

[Xi ≤ vi,j ] (j ∈ [si])). The oracle takes such a
representation of D as input, and can output a super arm S′ = Oracle(D) ∈ F such that rD(S′) ≥
α ·maxS∈F{rD(S)}.

3 SDCB Algorithm

3[0, 1]S is isomorphic to [0, 1]|S|; the coordinates in [0, 1]S are indexed by elements in S.
4Note that SAt may be random due to the random outcomes in previous rounds and the possible randomness

used by A.
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Algorithm 1 SDCB (Stochastically dominant confidence bound)
1: Throughout the algorithm, for each arm i ∈ [m], maintain: (i) a counter Ti which stores the

number of times arm i has been played so far, and (ii) the empirical distribution D̂i of the
observed outcomes from arm i so far, which is represented by its CDF F̂i

2: // Initialization
3: for i = 1 to m do
4: // Action in the i-th round
5: Play a super arm Si that contains arm i

6: Update Tj and F̂j for each j ∈ Si
7: end for

8: for t = m+ 1,m+ 2, . . . do
9: // Action in the t-th round

10: For each i ∈ [m], let Di be a distribution whose CDF Fi is

Fi(x) =

{
max{F̂i(x)−

√
3 ln t
2Ti

, 0}, 0 ≤ x < 1

1, x = 1

11: Play the super arm St ← Oracle(D), where D = D1 ×D2 × · · · ×Dm

12: Update Tj and F̂j for each j ∈ St
13: end for

We present our algorithm stochastically dominant confidence bound (SDCB) in Algorithm 1. Through-
out the algorithm, we store, in a variable Ti, the number of times the outcomes from arm i are observed
so far. We also maintain the empirical distribution D̂i of the observed outcomes from arm i so far,
which can be represented by its CDF F̂i: for x ∈ [0, 1], the value of F̂i(x) is just the fraction of
the observed outcomes from arm i that are no larger than x. Note that F̂i is always a step function
which has “jumps” at the points that are observed outcomes from arm i. Therefore it suffices to store
these discrete points as well as the values of F̂i at these points in order to store the whole function
F̂i. Similarly, the later computation of stochastically dominant CDF Fi (line 10) only requires
computation at these points, and the input to the offline oracle only needs to provide these points and
corresponding CDF values (line 11).

The algorithm starts withm initialization rounds in which each arm is played at least once5 (lines 2-7).
In the t-th round (t > m), the algorithm consists of three steps. First, it calculates for each i ∈ [m] a
distribution Di whose CDF Fi is obtained by lowering the CDF F̂i (line 10). The second step is to
call the α-approximation oracle with the newly constructed distribution D = D1×· · ·×Dm as input
(line 11), and thus the super arm St output by the oracle satisfies rD(St) ≥ α ·maxS∈F{rD(S)}.
Finally, the algorithm chooses the super arm St to play, observes the outcomes from all arms in St,
and updates Tj’s and F̂j’s accordingly for each j ∈ St.
The idea behind our algorithm is the optimism in the face of uncertainty principle, which is the key
principle behind UCB-type algorithms. Our algorithm ensures that with high probability we have
Fi(x) ≤ Fi(x) simultaneously for all i ∈ [m] and all x ∈ [0, 1], where Fi is the CDF of the outcome
distribution Di. This means that each Di has first-order stochastic dominance over Di.6 Then from
the monotonicity property of R(x, S) (Assumption 3) we know that rD(S) ≥ rD(S) holds for all
S ∈ F with high probability. Therefore D provides an “optimistic” estimation on the expected
reward from each super arm.

Regret Bounds. We prove O(log T ) distribution-dependent and O(
√
T log T ) distribution-

independent upper bounds on the regret of SDCB (Algorithm 1).

5Without loss of generality, we assume that each arm i ∈ [m] is contained in at least one super arm.
6We remark that while Fi(x) is a numerical lower confidence bound on Fi(x) for all x ∈ [0, 1], at the

distribution level, Di serves as a “stochastically dominant (upper) confidence bound” on Di.
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We call a super arm S bad if rD(S) < α · rD(S∗). For each super arm S, we define

∆S = max{α · rD(S∗)− rD(S), 0}.
Let FB = {S ∈ F | ∆S > 0}, which is the set of all bad super arms. Let EB ⊆ [m] be the set of
arms that are contained in at least one bad super arm. For each i ∈ EB, we define

∆i,min = min{∆S | S ∈ FB, i ∈ S}.
Recall that M is an upper bound on the reward value (Assumption 2) and K = maxS∈F |S|.
Theorem 1. A distribution-dependent upper bound on the α-approximation regret of SDCB (Algo-
rithm 1) in T rounds is

M2K
∑
i∈EB

2136

∆i,min
lnT +

(
π2

3
+ 1

)
αMm,

and a distribution-independent upper bound is

93M
√
mKT lnT +

(
π2

3
+ 1

)
αMm.

The proof of Theorem 1 is given in the supplementary material. The main idea is to reduce our
analysis on general reward functions satisfying Assumptions 1-3 to the one in [18] that deals with
the summation reward function R(x, S) =

∑
i∈S xi. Our analysis relies on the Dvoretzky-Kiefer-

Wolfowitz inequality [10, 24], which gives a uniform concentration bound on the empirical CDF of a
distribution.

Applying Our Algorithm to the Previous CMAB Framework. Although our focus is on general
reward functions, we note that when SDCB is applied to the previous CMAB framework where the
expected reward depends only on the means of the random variables, it can achieve the same regret
bounds as the previous combinatorial upper confidence bound (CUCB) algorithm in [8, 18].

Let µi = EX∼D[Xi] be arm i’s mean outcome. In each round CUCB calculates (for each arm i) an
upper confidence bound µ̄i on µi, with the essential property that µi ≤ µ̄i ≤ µi + Λi holds with
high probability, for some Λi > 0. In SDCB, we use Di as a stochastically dominant confidence
bound of Di. We can show that µi ≤ EYi∼Di [Yi] ≤ µi + Λi holds with high probability, with the
same interval length Λi as in CUCB. (The proof is given in the supplementary material.) Hence, the
analysis in [8, 18] can be applied to SDCB, resulting in the same regret bounds.We further remark that
in this case we do not need the three assumptions stated in Section 2 (in particular the independence
assumption on Xi’s): the summation reward case just works as in [18] and the nonlinear reward case
relies on the properties of monotonicity and bounded smoothness used in [8].

4 Improved SDCB Algorithm by Discretization

In Section 3, we have shown that our algorithm SDCB achieves near-optimal regret bounds. However,
that algorithm might suffer from large running time and memory usage. Note that, in the t-th round,
an arm i might have been observed t− 1 times already, and it is possible that all the observed values
from arm i are different (e.g., when arm i’s outcome distribution Di is continuous). In such case,
it takes Θ(t) space to store the empirical CDF F̂i of the observed outcomes from arm i, and both
calculating the stochastically dominant CDF Fi and updating F̂i take Θ(t) time. Therefore, the
worst-case space usage of SDCB in T rounds is Θ(T ), and the worst-case running time is Θ(T 2)
(ignoring the dependence on m and K); here we do not count the time and space used by the offline
computation oracle.

In this section, we propose an improved algorithm Lazy-SDCB which reduces the worst-case memory
usage and running time to O(

√
T ) and O(T 3/2), respectively, while preserving the O(

√
T log T )

distribution-independent regret bound. To this end, we need an additional assumption on the reward
function:
Assumption 4 (Lipschitz-continuous reward function). There exists C > 0 such that for any S ∈ F
and any x, x′ ∈ [0, 1]m, we have |R(x, S)−R(x′, S)| ≤ C‖xS − x′S‖1, where ‖xS − x′S‖1 =∑
i∈S |xi − x′i|.
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Algorithm 2 Lazy-SDCB with known time horizon
Input: time horizon T

1: s← d
√
T e

2: Ij ←
{

[0, 1s ], j = 1

( j−1s , js ], j = 2, . . . , s
3: Invoke SDCB (Algorithm 1) for T rounds, with the following change: whenever observing an

outcome x (from any arm), find j ∈ [s] such that x ∈ Ij , and regard this outcome as j
s

Algorithm 3 Lazy-SDCB without knowing the time horizon
1: q ← dlog2me
2: In rounds 1, 2, . . . , 2q , invoke Algorithm 2 with input T = 2q

3: for k = q, q + 1, q + 2, . . . do
4: In rounds 2k + 1, 2k + 2, . . . , 2k+1, invoke Algorithm 2 with input T = 2k

5: end for

We first describe the algorithm when the time horizon T is known in advance. The algorithm is
summarized in Algorithm 2. We perform a discretization on the distribution D = D1 × · · · ×Dm to
obtain a discrete distribution D̃ = D̃1 × · · · × D̃m such that (i) for X̃ ∼ D̃, X̃1, . . . , X̃m are also
mutually independent, and (ii) every D̃i is supported on a set of equally-spaced values { 1s ,

2
s , . . . , 1},

where s is set to be d
√
T e. Specifically, we partition [0, 1] into s intervals: I1 = [0, 1s ], I2 =

( 1
s ,

2
s ], . . . , Is−1 = ( s−2s , s−1s ], Is = ( s−1s , 1], and define D̃i as

Pr
X̃i∼D̃i

[X̃i = j/s] = Pr
Xi∼Di

[Xi ∈ Ij ] , j = 1, . . . , s.

For the CMAB problem ([m],F , D,R), our algorithm “pretends” that the outcomes are drawn from
D̃ instead of D, by replacing any outcome x ∈ Ij by j

s (∀j ∈ [s]), and then applies SDCB to the
problem ([m],F , D̃, R). Since each D̃i has a known support { 1s ,

2
s , . . . , 1}, the algorithm only needs

to maintain the number of occurrences of each support value in order to obtain the empirical CDF of
all the observed outcomes from arm i. Therefore, all the operations in a round can be done using
O(s) = O(

√
T ) time and space, and the total time and space used by Lazy-SDCB are O(T 3/2) and

O(
√
T ), respectively.

The discretization parameter s in Algorithm 2 depends on the time horizon T , which is why Algo-
rithm 2 has to know T in advance. We can use the doubling trick to avoid the dependency on T . We
present such an algorithm (without knowing T ) in Algorithm 3. It is easy to see that Algorithm 3 has
the same asymptotic time and space usages as Algorithm 2.

Regret Bounds. We show that both Algorithm 2 and Algorithm 3 achieve O(
√
T log T )

distribution-independent regret bounds. The full proofs are given in the supplementary material.
Recall that C is the coefficient in the Lipschitz condition in Assumption 4.

Theorem 2. Suppose the time horizon T is known in advance. Then the α-approximation regret of
Algorithm 2 in T rounds is at most

93M
√
mKT lnT + 2CK

√
T +

(
π2

3
+ 1

)
αMm.

Proof Sketch. The regret consists of two parts: (i) the regret for the discretized CMAB problem
([m],F , D̃, R), and (ii) the error due to discretization. We directly apply Theorem 1 for the first
part. For the second part, a key step is to show |rD(S)− rD̃(S)| ≤ CK/s for all S ∈ F (see the
supplementary material).

Theorem 3. For any time horizon T ≥ 2, the α-approximation regret of Algorithm 3 in T rounds is
at most

318M
√
mKT lnT + 7CK

√
T + 10αMm lnT.
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5 Applications

We describe the K-MAX problem and the class of expected utility maximization problems as
applications of our general CMAB framework.

The K-MAX Problem. In this problem, the player is allowed to select at most K arms from the
set of m arms in each round, and the reward is the maximum one among the outcomes from the
selected arms. In other words, the set of feasible super arms is F =

{
S ⊆ [m]

∣∣ |S| ≤ K}, and
the reward function is R(x, S) = maxi∈S xi. It is easy to verify that this reward function satisfies
Assumptions 2, 3 and 4 with M = C = 1.

Now we consider the corresponding offline K-MAX problem of selecting at most K arms from
m independent arms, with the largest expected reward. It can be implied by a result in [14] that
finding the exact optimal solution is NP-hard, so we resort to approximation algorithms. We can
show, using submodularity, that a simple greedy algorithm can achieve a (1− 1/e)-approximation.
Furthermore, we give the first PTAS for this problem. Our PTAS can be generalized to constraints
other than the cardinality constraint |S| ≤ K, including s-t simple paths, matchings, knapsacks, etc.
The algorithms and corresponding proofs are given in the supplementary material.

Theorem 4. There exists a PTAS for the offline K-MAX problem. In other words, for any constant
ε > 0, there is a polynomial-time (1− ε)-approximation algorithm for the offline K-MAX problem.

We thus can apply our SDCB algorithm to the K-MAX bandit problem and obtain O(log T )

distribution-dependent and Õ(
√
T ) distribution-independent regret bounds according to Theorem 1,

or can apply Lazy-SDCB to get Õ(
√
T ) distribution-independent bound according to Theorem 2 or 3.

Streeter and Golovin [26] study an online submodular maximization problem in the oblivious
adversary model. In particular, their result can cover the stochastic K-MAX bandit problem as a
special case, and an O(K

√
mT logm) upper bound on the (1− 1/e)-regret can be shown. While

the techniques in [26] can only give a bound on the (1 − 1/e)-approximation regret for K-MAX,
we can obtain the first Õ(

√
T ) bound on the (1 − ε)-approximation regret for any constant ε > 0,

using our PTAS as the offline oracle. Even when we use the simple greedy algorithm as the oracle,
our experiments show that SDCB performs significantly better than the algorithm in [26] (see the
supplementary material).

Expected Utility Maximization. Our framework can also be applied to reward functions of the
form R(x, S) = u(

∑
i∈S xi), where u(·) is an increasing utility function. The corresponding offline

problem is to maximize the expected utility E[u(
∑
i∈S xi)] subject to a feasibility constraint S ∈ F .

Note that if u is nonlinear, the expected utility may not be a function of the means of the arms in
S. Following the celebrated von Neumann-Morgenstern expected utility theorem, nonlinear utility
functions have been extensively used to capture risk-averse or risk-prone behaviors in economics (see
e.g., [11]), while linear utility functions correspond to risk-neutrality.

Li and Deshpande [20] obtain a PTAS for the expected utility maximization (EUM) problem for
several classes of utility functions (including for example increasing concave functions which
typically indicate risk-averseness), and a large class of feasibility constraints (including cardinality
constraint, s-t simple paths, matchings, and knapsacks). Similar results for other utility functions and
feasibility constraints can be found in [27, 21, 4]. In the online problem, we can apply our algorithms,
using their PTASs as the offline oracle. Again, we can obtain the first tight regret bounds on the
(1− ε)-approximation regret for any ε > 0, for the class of online EUM problems.
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