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Abstract

We present a general theoretical analysis of structured prediction with a series

of new results. We give new data-dependent margin guarantees for structured

prediction for a very wide family of loss functions and a general family of hypothe-

ses, with an arbitrary factor graph decomposition. These are the tightest margin

bounds known for both standard multi-class and general structured prediction

problems. Our guarantees are expressed in terms of a data-dependent complexity

measure, factor graph complexity, which we show can be estimated from data and

bounded in terms of familiar quantities for several commonly used hypothesis sets

along with a sparsity measure for features and graphs. Our proof techniques in-

clude generalizations of Talagrand’s contraction lemma that can be of independent

interest.

We further extend our theory by leveraging the principle of Voted Risk Minimiza-

tion (VRM) and show that learning is possible even with complex factor graphs. We

present new learning bounds for this advanced setting, which we use to design two

new algorithms, Voted Conditional Random Field (VCRF) and Voted Structured
Boosting (StructBoost). These algorithms can make use of complex features and

factor graphs and yet benefit from favorable learning guarantees. We also report

the results of experiments with VCRF on several datasets to validate our theory.

1 Introduction

Structured prediction covers a broad family of important learning problems. These include key tasks

in natural language processing such as part-of-speech tagging, parsing, machine translation, and

named-entity recognition, important areas in computer vision such as image segmentation and object

recognition, and also crucial areas in speech processing such as pronunciation modeling and speech

recognition.

In all these problems, the output space admits some structure. This may be a sequence of tags as in

part-of-speech tagging, a parse tree as in context-free parsing, an acyclic graph as in dependency

parsing, or labels of image segments as in object detection. Another property common to these tasks

is that, in each case, the natural loss function admits a decomposition along the output substructures.

As an example, the loss function may be the Hamming loss as in part-of-speech tagging, or it may be

the edit-distance, which is widely used in natural language and speech processing.
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The output structure and corresponding loss function make these problems significantly different

from the (unstructured) binary classification problems extensively studied in learning theory. In

recent years, a number of different algorithms have been designed for structured prediction, including

Conditional Random Field (CRF) [Lafferty et al., 2001], StructSVM [Tsochantaridis et al., 2005],

Maximum-Margin Markov Network (M3N) [Taskar et al., 2003], a kernel-regression algorithm

[Cortes et al., 2007], and search-based approaches such as [Daumé III et al., 2009, Doppa et al., 2014,

Lam et al., 2015, Chang et al., 2015, Ross et al., 2011]. More recently, deep learning techniques have

also been developed for tasks including part-of-speech tagging [Jurafsky and Martin, 2009, Vinyals

et al., 2015a], named-entity recognition [Nadeau and Sekine, 2007], machine translation [Zhang et al.,

2008], image segmentation [Lucchi et al., 2013], and image annotation [Vinyals et al., 2015b].

However, in contrast to the plethora of algorithms, there have been relatively few studies devoted

to the theoretical understanding of structured prediction [Bakir et al., 2007]. Existing learning

guarantees hold primarily for simple losses such as the Hamming loss [Taskar et al., 2003, Cortes

et al., 2014, Collins, 2001] and do not cover other natural losses such as the edit-distance. They also

typically only apply to specific factor graph models. The main exception is the work of McAllester

[2007], which provides PAC-Bayesian guarantees for arbitrary losses, though only in the special case

of randomized algorithms using linear (count-based) hypotheses.

This paper presents a general theoretical analysis of structured prediction with a series of new results.

We give new data-dependent margin guarantees for structured prediction for a broad family of loss

functions and a general family of hypotheses, with an arbitrary factor graph decomposition. These

are the tightest margin bounds known for both standard multi-class and general structured prediction

problems. For special cases studied in the past, our learning bounds match or improve upon the

previously best bounds (see Section 3.3). In particular, our bounds improve upon those of Taskar et al.

[2003]. Our guarantees are expressed in terms of a data-dependent complexity measure, factor graph
complexity, which we show can be estimated from data and bounded in terms of familiar quantities

for several commonly used hypothesis sets along with a sparsity measure for features and graphs.

We further extend our theory by leveraging the principle of Voted Risk Minimization (VRM) and

show that learning is possible even with complex factor graphs. We present new learning bounds for

this advanced setting, which we use to design two new algorithms, Voted Conditional Random Field
(VCRF) and Voted Structured Boosting (StructBoost). These algorithms can make use of complex

features and factor graphs and yet benefit from favorable learning guarantees. As a proof of concept

validating our theory, we also report the results of experiments with VCRF on several datasets.

The paper is organized as follows. In Section 2 we introduce the notation and definitions relevant to

our discussion of structured prediction. In Section 3, we derive a series of new learning guarantees

for structured prediction, which are then used to prove the VRM principle in Section 4. Section 5

develops the algorithmic framework which is directly based on our theory. In Section 6, we provide

some preliminary experimental results that serve as a proof of concept for our theory.

2 Preliminaries

Let X denote the input space and Y the output space. In structured prediction, the output space may

be a set of sequences, images, graphs, parse trees, lists, or some other (typically discrete) objects

admitting some possibly overlapping structure. Thus, we assume that the output structure can be

decomposed into l substructures. For example, this may be positions along a sequence, so that the

output space Y is decomposable along these substructures: Y = Y
1

⇥ · · · ⇥ Y
l

. Here, Y
k

is the set

of possible labels (or classes) that can be assigned to substructure k.

Loss functions. We denote by L : Y ⇥ Y ! R
+

a loss function measuring the dissimilarity of

two elements of the output space Y . We will assume that the loss function L is definite, that is

L(y, y0
) = 0 iff y = y0

. This assumption holds for all loss functions commonly used in structured

prediction. A key aspect of structured prediction is that the loss function can be decomposed along the

substructures Y
k

. As an example, L may be the Hamming loss defined by L(y, y0
) =

1

l

P

l

k=1

1

y

k

6=y

0
k

for all y = (y
1

, . . . , y
l

) and y0
= (y0

1

, . . . , y0
l

), with y
k

, y0
k

2 Y
k

. In the common case where Y is

a set of sequences defined over a finite alphabet, L may be the edit-distance, which is widely used

in natural language and speech processing applications, with possibly different costs associated to

insertions, deletions and substitutions. L may also be a loss based on the negative inner product of

the vectors of n-gram counts of two sequences, or its negative logarithm. Such losses have been
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used to approximate the BLEU score loss in machine translation. There are other losses defined

in computational biology based on various string-similarity measures. Our theoretical analysis is

general and applies to arbitrary bounded and definite loss functions.

Scoring functions and factor graphs. We will adopt the common approach in structured prediction

where predictions are based on a scoring function mapping X ⇥ Y to R. Let H be a family of

scoring functions. For any h 2 H, we denote by h the predictor defined by h: for any x 2 X ,

h(x) = argmax

y2Y h(x, y).

Furthermore, we will assume, as is standard in structured prediction, that each function h 2 H can

be decomposed as a sum. We will consider the most general case for such decompositions, which

can be made explicit using the notion of factor graphs.

1

A factor graph G is a tuple G = (V, F, E),

where V is a set of variable nodes, F a set of factor nodes, and E a set of undirected edges between

a variable node and a factor node. In our context, V can be identified with the set of substructure

indices, that is V = {1, . . . , l}.

For any factor node f , denote by N(f) ✓ V the set of variable nodes connected to f via an edge and

define Y
f

as the substructure set cross-product Y
f

=

Q

k2N(f)

Y
k

. Then, h admits the following

decomposition as a sum of functions h
f

, each taking as argument an element of the input space

x 2 X and an element of Y
f

, y
f

2 Y
f

:

h(x, y) =

X

f2F

h
f

(x, y
f

). (1)

Figure 1 illustrates this definition with two different decompositions. More generally, we will consider

the setting in which a factor graph may depend on a particular example (x
i

, y
i

): G(x
i

, y
i

) = G
i

=

([l
i

], F
i

, E
i

). A special case of this setting is for example when the size l
i

(or length) of each example

is allowed to vary and where the number of possible labels |Y| is potentially infinite.

We present other examples of such hypothesis sets and their decomposition in Section 3, where we

discuss our learning guarantees. Note that such hypothesis sets H with an additive decomposition are

those commonly used in most structured prediction algorithms [Tsochantaridis et al., 2005, Taskar

et al., 2003, Lafferty et al., 2001]. This is largely motivated by the computational requirement for

efficient training and inference. Our results, while very general, further provide a statistical learning

motivation for such decompositions.

Learning scenario. We consider the familiar supervised learning scenario where the training and

test points are drawn i.i.d. according to some distribution D over X ⇥ Y . We will further adopt the

standard definitions of margin, generalization error and empirical error. The margin ⇢
h

(x, y) of a

hypothesis h for a labeled example (x, y) 2 X ⇥ Y is defined by

⇢
h

(x, y) = h(x, y) � max

y

0 6=y

h(x, y0
). (2)

Let S = ((x
1

, y
1

), . . . , (x
m

, y
m

)) be a training sample of size m drawn from Dm

. We denote by

R(h) the generalization error and by

bR
S

(h) the empirical error of h over S:

R(h) = E
(x,y)⇠D

[L(h(x), y)] and

bR
S

(h) = E
(x,y)⇠S

[L(h(x), y)], (3)

1

Factor graphs are typically used to indicate the factorization of a probabilistic model. We are not assuming

probabilistic models, but they would be also captured by our general framework: h would then be - log of a

probability.
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where h(x) = argmax

y

h(x, y) and where the notation (x, y)⇠S indicates that (x, y) is drawn

according to the empirical distribution defined by S. The learning problem consists of using the

sample S to select a hypothesis h 2 H with small expected loss R(h).

Observe that the definiteness of the loss function implies, for all x 2 X , the following equality:

L(h(x), y) = L(h(x), y) 1

⇢

h

(x,y)0

. (4)

We will later use this identity in the derivation of surrogate loss functions.

3 General learning bounds for structured prediction

In this section, we present new learning guarantees for structured prediction. Our analysis is general

and applies to the broad family of definite and bounded loss functions described in the previous

section. It is also general in the sense that it applies to general hypothesis sets and not just sub-families

of linear functions. For linear hypotheses, we will give a more refined analysis that holds for arbitrary

norm-p regularized hypothesis sets.

The theoretical analysis of structured prediction is more complex than for classification since, by

definition, it depends on the properties of the loss function and the factor graph. These attributes

capture the combinatorial properties of the problem which must be exploited since the total number

of labels is often exponential in the size of that graph. To tackle this problem, we first introduce a

new complexity tool.

3.1 Complexity measure

A key ingredient of our analysis is a new data-dependent notion of complexity that extends the

classical Rademacher complexity. We define the empirical factor graph Rademacher complexity
bRG

S

(H) of a hypothesis set H for a sample S = (x
1

, . . . , x
m

) and factor graph G as follows:

bRG

S

(H) =

1

m
E
✏

"

sup

h2H

m

X

i=1

X

f2F

i

X

y2Y
f

p

|F
i

| ✏
i,f,y

h
f

(x
i

, y)

#

,

where ε = (✏
i,f,y

)

i2[m],f2F

i

,y2Y
f

and where ✏
i,f,y

s are independent Rademacher random variables

uniformly distributed over {±1}. The factor graph Rademacher complexity of H for a factor graph

G is defined as the expectation: RG

m

(H) = E
S⇠Dm

⇥

bRG

S

(H)

⇤

. It can be shown that the empirical

factor graph Rademacher complexity is concentrated around its mean (Lemma 8). The factor graph

Rademacher complexity is a natural extension of the standard Rademacher complexity to vector-

valued hypothesis sets (with one coordinate per factor in our case). For binary classification, the factor

graph and standard Rademacher complexities coincide. Otherwise, the factor graph complexity can be

upper bounded in terms of the standard one. As with the standard Rademacher complexity, the factor

graph Rademacher complexity of a hypothesis set can be estimated from data in many cases. In some

important cases, it also admits explicit upper bounds similar to those for the standard Rademacher

complexity but with an additional dependence on the factor graph quantities. We will prove this for

several families of functions which are commonly used in structured prediction (Theorem 2).

3.2 Generalization bounds

In this section, we present new margin bounds for structured prediction based on the factor graph

Rademacher complexity of H. Our results hold both for the additive and the multiplicative empirical

margin losses defined below:

bRadd

S,⇢

(h) = E
(x,y)⇠S



�

⇤
✓

max

y

0 6=y

L(y0, y) � 1

⇢

⇥

h(x, y) � h(x, y0
)

⇤

◆�

(5)

bRmult

S,⇢

(h) = E
(x,y)⇠S



�

⇤
✓

max

y

0 6=y

L(y0, y)

⇣

1 � 1

⇢

[h(x, y) � h(x, y0
)]

⌘

◆�

. (6)

Here, �

⇤
(r) = min(M, max(0, r)) for all r, with M = max

y,y

0 L(y, y0
). As we show in Section 5,

convex upper bounds on

bRadd

S,⇢

(h) and

bRmult

S,⇢

(h) directly lead to many existing structured prediction

algorithms. The following is our general data-dependent margin bound for structured prediction.
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