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Abstract

We present a general theoretical analysis of structured prediction with a series

of new results. We give new data-dependent margin guarantees for structured

prediction for a very wide family of loss functions and a general family of hypothe-

ses, with an arbitrary factor graph decomposition. These are the tightest margin

bounds known for both standard multi-class and general structured prediction

problems. Our guarantees are expressed in terms of a data-dependent complexity

measure, factor graph complexity, which we show can be estimated from data and

bounded in terms of familiar quantities for several commonly used hypothesis sets

along with a sparsity measure for features and graphs. Our proof techniques in-

clude generalizations of Talagrand’s contraction lemma that can be of independent

interest.

We further extend our theory by leveraging the principle of Voted Risk Minimiza-

tion (VRM) and show that learning is possible even with complex factor graphs. We

present new learning bounds for this advanced setting, which we use to design two

new algorithms, Voted Conditional Random Field (VCRF) and Voted Structured
Boosting (StructBoost). These algorithms can make use of complex features and

factor graphs and yet benefit from favorable learning guarantees. We also report

the results of experiments with VCRF on several datasets to validate our theory.

1 Introduction

Structured prediction covers a broad family of important learning problems. These include key tasks

in natural language processing such as part-of-speech tagging, parsing, machine translation, and

named-entity recognition, important areas in computer vision such as image segmentation and object

recognition, and also crucial areas in speech processing such as pronunciation modeling and speech

recognition.

In all these problems, the output space admits some structure. This may be a sequence of tags as in

part-of-speech tagging, a parse tree as in context-free parsing, an acyclic graph as in dependency

parsing, or labels of image segments as in object detection. Another property common to these tasks

is that, in each case, the natural loss function admits a decomposition along the output substructures.

As an example, the loss function may be the Hamming loss as in part-of-speech tagging, or it may be

the edit-distance, which is widely used in natural language and speech processing.
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The output structure and corresponding loss function make these problems significantly different

from the (unstructured) binary classification problems extensively studied in learning theory. In

recent years, a number of different algorithms have been designed for structured prediction, including

Conditional Random Field (CRF) [Lafferty et al., 2001], StructSVM [Tsochantaridis et al., 2005],

Maximum-Margin Markov Network (M3N) [Taskar et al., 2003], a kernel-regression algorithm

[Cortes et al., 2007], and search-based approaches such as [Daumé III et al., 2009, Doppa et al., 2014,

Lam et al., 2015, Chang et al., 2015, Ross et al., 2011]. More recently, deep learning techniques have

also been developed for tasks including part-of-speech tagging [Jurafsky and Martin, 2009, Vinyals

et al., 2015a], named-entity recognition [Nadeau and Sekine, 2007], machine translation [Zhang et al.,

2008], image segmentation [Lucchi et al., 2013], and image annotation [Vinyals et al., 2015b].

However, in contrast to the plethora of algorithms, there have been relatively few studies devoted

to the theoretical understanding of structured prediction [Bakir et al., 2007]. Existing learning

guarantees hold primarily for simple losses such as the Hamming loss [Taskar et al., 2003, Cortes

et al., 2014, Collins, 2001] and do not cover other natural losses such as the edit-distance. They also

typically only apply to specific factor graph models. The main exception is the work of McAllester

[2007], which provides PAC-Bayesian guarantees for arbitrary losses, though only in the special case

of randomized algorithms using linear (count-based) hypotheses.

This paper presents a general theoretical analysis of structured prediction with a series of new results.

We give new data-dependent margin guarantees for structured prediction for a broad family of loss

functions and a general family of hypotheses, with an arbitrary factor graph decomposition. These

are the tightest margin bounds known for both standard multi-class and general structured prediction

problems. For special cases studied in the past, our learning bounds match or improve upon the

previously best bounds (see Section 3.3). In particular, our bounds improve upon those of Taskar et al.

[2003]. Our guarantees are expressed in terms of a data-dependent complexity measure, factor graph
complexity, which we show can be estimated from data and bounded in terms of familiar quantities

for several commonly used hypothesis sets along with a sparsity measure for features and graphs.

We further extend our theory by leveraging the principle of Voted Risk Minimization (VRM) and

show that learning is possible even with complex factor graphs. We present new learning bounds for

this advanced setting, which we use to design two new algorithms, Voted Conditional Random Field
(VCRF) and Voted Structured Boosting (StructBoost). These algorithms can make use of complex

features and factor graphs and yet benefit from favorable learning guarantees. As a proof of concept

validating our theory, we also report the results of experiments with VCRF on several datasets.

The paper is organized as follows. In Section 2 we introduce the notation and definitions relevant to

our discussion of structured prediction. In Section 3, we derive a series of new learning guarantees

for structured prediction, which are then used to prove the VRM principle in Section 4. Section 5

develops the algorithmic framework which is directly based on our theory. In Section 6, we provide

some preliminary experimental results that serve as a proof of concept for our theory.

2 Preliminaries

Let X denote the input space and Y the output space. In structured prediction, the output space may

be a set of sequences, images, graphs, parse trees, lists, or some other (typically discrete) objects

admitting some possibly overlapping structure. Thus, we assume that the output structure can be

decomposed into l substructures. For example, this may be positions along a sequence, so that the

output space Y is decomposable along these substructures: Y = Y
1

⇥ · · · ⇥ Y
l

. Here, Y
k

is the set

of possible labels (or classes) that can be assigned to substructure k.

Loss functions. We denote by L : Y ⇥ Y ! R
+

a loss function measuring the dissimilarity of

two elements of the output space Y . We will assume that the loss function L is definite, that is

L(y, y0
) = 0 iff y = y0

. This assumption holds for all loss functions commonly used in structured

prediction. A key aspect of structured prediction is that the loss function can be decomposed along the

substructures Y
k

. As an example, L may be the Hamming loss defined by L(y, y0
) =

1

l

P

l

k=1

1

y

k

6=y

0
k

for all y = (y
1

, . . . , y
l

) and y0
= (y0

1

, . . . , y0
l

), with y
k

, y0
k

2 Y
k

. In the common case where Y is

a set of sequences defined over a finite alphabet, L may be the edit-distance, which is widely used

in natural language and speech processing applications, with possibly different costs associated to

insertions, deletions and substitutions. L may also be a loss based on the negative inner product of

the vectors of n-gram counts of two sequences, or its negative logarithm. Such losses have been
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used to approximate the BLEU score loss in machine translation. There are other losses defined

in computational biology based on various string-similarity measures. Our theoretical analysis is

general and applies to arbitrary bounded and definite loss functions.

Scoring functions and factor graphs. We will adopt the common approach in structured prediction

where predictions are based on a scoring function mapping X ⇥ Y to R. Let H be a family of

scoring functions. For any h 2 H, we denote by h the predictor defined by h: for any x 2 X ,

h(x) = argmax

y2Y h(x, y).

Furthermore, we will assume, as is standard in structured prediction, that each function h 2 H can

be decomposed as a sum. We will consider the most general case for such decompositions, which

can be made explicit using the notion of factor graphs.

1

A factor graph G is a tuple G = (V, F, E),

where V is a set of variable nodes, F a set of factor nodes, and E a set of undirected edges between

a variable node and a factor node. In our context, V can be identified with the set of substructure

indices, that is V = {1, . . . , l}.

For any factor node f , denote by N(f) ✓ V the set of variable nodes connected to f via an edge and

define Y
f

as the substructure set cross-product Y
f

=

Q

k2N(f)

Y
k

. Then, h admits the following

decomposition as a sum of functions h
f

, each taking as argument an element of the input space

x 2 X and an element of Y
f

, y
f

2 Y
f

:

h(x, y) =

X

f2F

h
f

(x, y
f

). (1)

Figure 1 illustrates this definition with two different decompositions. More generally, we will consider

the setting in which a factor graph may depend on a particular example (x
i

, y
i

): G(x
i

, y
i

) = G
i

=

([l
i

], F
i

, E
i

). A special case of this setting is for example when the size l
i

(or length) of each example

is allowed to vary and where the number of possible labels |Y| is potentially infinite.

We present other examples of such hypothesis sets and their decomposition in Section 3, where we

discuss our learning guarantees. Note that such hypothesis sets H with an additive decomposition are

those commonly used in most structured prediction algorithms [Tsochantaridis et al., 2005, Taskar

et al., 2003, Lafferty et al., 2001]. This is largely motivated by the computational requirement for

efficient training and inference. Our results, while very general, further provide a statistical learning

motivation for such decompositions.

Learning scenario. We consider the familiar supervised learning scenario where the training and

test points are drawn i.i.d. according to some distribution D over X ⇥ Y . We will further adopt the

standard definitions of margin, generalization error and empirical error. The margin ⇢
h

(x, y) of a

hypothesis h for a labeled example (x, y) 2 X ⇥ Y is defined by

⇢
h

(x, y) = h(x, y) � max

y

0 6=y

h(x, y0
). (2)

Let S = ((x
1

, y
1

), . . . , (x
m

, y
m

)) be a training sample of size m drawn from Dm

. We denote by

R(h) the generalization error and by

bR
S

(h) the empirical error of h over S:

R(h) = E
(x,y)⇠D

[L(h(x), y)] and

bR
S

(h) = E
(x,y)⇠S

[L(h(x), y)], (3)

1

Factor graphs are typically used to indicate the factorization of a probabilistic model. We are not assuming

probabilistic models, but they would be also captured by our general framework: h would then be - log of a

probability.
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where h(x) = argmax

y

h(x, y) and where the notation (x, y)⇠S indicates that (x, y) is drawn

according to the empirical distribution defined by S. The learning problem consists of using the

sample S to select a hypothesis h 2 H with small expected loss R(h).

Observe that the definiteness of the loss function implies, for all x 2 X , the following equality:

L(h(x), y) = L(h(x), y) 1

⇢

h

(x,y)0

. (4)

We will later use this identity in the derivation of surrogate loss functions.

3 General learning bounds for structured prediction

In this section, we present new learning guarantees for structured prediction. Our analysis is general

and applies to the broad family of definite and bounded loss functions described in the previous

section. It is also general in the sense that it applies to general hypothesis sets and not just sub-families

of linear functions. For linear hypotheses, we will give a more refined analysis that holds for arbitrary

norm-p regularized hypothesis sets.

The theoretical analysis of structured prediction is more complex than for classification since, by

definition, it depends on the properties of the loss function and the factor graph. These attributes

capture the combinatorial properties of the problem which must be exploited since the total number

of labels is often exponential in the size of that graph. To tackle this problem, we first introduce a

new complexity tool.

3.1 Complexity measure

A key ingredient of our analysis is a new data-dependent notion of complexity that extends the

classical Rademacher complexity. We define the empirical factor graph Rademacher complexity
bRG

S

(H) of a hypothesis set H for a sample S = (x
1

, . . . , x
m

) and factor graph G as follows:

bRG

S

(H) =

1

m
E
✏

"

sup

h2H

m

X

i=1

X

f2F

i

X

y2Y
f

p

|F
i

| ✏
i,f,y

h
f

(x
i

, y)

#

,

where ✏ = (✏
i,f,y

)

i2[m],f2F

i

,y2Y
f

and where ✏
i,f,y

s are independent Rademacher random variables

uniformly distributed over {±1}. The factor graph Rademacher complexity of H for a factor graph

G is defined as the expectation: RG

m

(H) = E
S⇠Dm

⇥

bRG

S

(H)

⇤

. It can be shown that the empirical

factor graph Rademacher complexity is concentrated around its mean (Lemma 8). The factor graph

Rademacher complexity is a natural extension of the standard Rademacher complexity to vector-

valued hypothesis sets (with one coordinate per factor in our case). For binary classification, the factor

graph and standard Rademacher complexities coincide. Otherwise, the factor graph complexity can be

upper bounded in terms of the standard one. As with the standard Rademacher complexity, the factor

graph Rademacher complexity of a hypothesis set can be estimated from data in many cases. In some

important cases, it also admits explicit upper bounds similar to those for the standard Rademacher

complexity but with an additional dependence on the factor graph quantities. We will prove this for

several families of functions which are commonly used in structured prediction (Theorem 2).

3.2 Generalization bounds

In this section, we present new margin bounds for structured prediction based on the factor graph

Rademacher complexity of H. Our results hold both for the additive and the multiplicative empirical

margin losses defined below:

bRadd

S,⇢

(h) = E
(x,y)⇠S



�

⇤
✓

max

y

0 6=y

L(y0, y) � 1

⇢

⇥

h(x, y) � h(x, y0
)

⇤

◆�

(5)

bRmult

S,⇢

(h) = E
(x,y)⇠S



�

⇤
✓

max

y

0 6=y

L(y0, y)

⇣

1 � 1

⇢

[h(x, y) � h(x, y0
)]

⌘

◆�

. (6)

Here, �

⇤
(r) = min(M, max(0, r)) for all r, with M = max

y,y

0 L(y, y0
). As we show in Section 5,

convex upper bounds on

bRadd

S,⇢

(h) and

bRmult

S,⇢

(h) directly lead to many existing structured prediction

algorithms. The following is our general data-dependent margin bound for structured prediction.
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Theorem 1. Fix ⇢ > 0. For any � > 0, with probability at least 1 � � over the draw of a sample S
of size m, the following holds for all h 2 H,

R(h)  Radd
⇢

(h)  bRadd
S,⇢

(h) +

4

p
2

⇢
RG

m

(H) + M

s

log

1

�

2m
,

R(h)  Rmult
⇢

(h)  bRmult
S,⇢

(h) +

4

p
2M

⇢
RG

m

(H) + M

s

log

1

�

2m
.

The full proof of Theorem 1 is given in Appendix A. It is based on a new contraction lemma

(Lemma 5) generalizing Talagrand’s lemma that can be of independent interest.

2

We also present a

more refined contraction lemma (Lemma 6) that can be used to improve the bounds of Theorem 1.

Theorem 1 is the first data-dependent generalization guarantee for structured prediction with general

loss functions, general hypothesis sets, and arbitrary factor graphs for both multiplicative and additive

margins. We also present a version of this result with empirical complexities as Theorem 7 in the

supplementary material. We will compare these guarantees to known special cases below.

The margin bounds above can be extended to hold uniformly over ⇢ 2 (0, 1] at the price of an

additional term of the form

p
(log log

2

2

⇢

)/m in the bound, using known techniques (see for example

[Mohri et al., 2012]).

The hypothesis set used by convex structured prediction algorithms such as StructSVM [Tsochan-

taridis et al., 2005], Max-Margin Markov Networks (M3N) [Taskar et al., 2003] or Conditional

Random Field (CRF) [Lafferty et al., 2001] is that of linear functions. More precisely, let  be a

feature mapping from (X ⇥ Y) to RN

such that (x, y) =

P

f2F

 

f

(x, y
f

). For any p, define H
p

as follows:

H
p

= {x 7! w · (x, y) : w 2 RN , kwk
p

 ⇤

p

}.

Then,

bRG

m

(H
p

) can be efficiently estimated using random sampling and solving LP programs.

Moreover, one can obtain explicit upper bounds on

bRG

m

(H
p

). To simplify our presentation, we will

consider the case p = 1, 2, but our results can be extended to arbitrary p � 1 and, more generally, to

arbitrary group norms.

Theorem 2. For any sample S = (x
1

, . . . , x
m

), the following upper bounds hold for the empirical
factor graph complexity of H

1

and H
2

:

bRG

S

(H
1

)  ⇤

1

r1
m

p

s log(2N), bRG

S

(H
2

)  ⇤

2

r
2

m

q

P

m

i=1

P

f2F

i

P

y2Y
f

|F
i

|,

where r1 = max

i,f,y

k 
f

(x
i

, y)k1, r
2

= max

i,f,y

k 
f

(x
i

, y)k
2

and where s is a sparsity factor
defined by s = max

j2[1,N ]

P

m

i=1

P

f2F

i

P

y2Y
f

|F
i

|1
 

f,j

(x

i

,y) 6=0

.

Plugging in these factor graph complexity upper bounds into Theorem 1 immediately yields explicit

data-dependent structured prediction learning guarantees for linear hypotheses with general loss

functions and arbitrary factor graphs (see Corollary 10). Observe that, in the worst case, the sparsity

factor can be bounded as follows:

s 
m

X

i=1

X

f2F

i

X

y2Y
f

|F
i

| 
m

X

i=1

|F
i

|2d
i

 m max

i

|F
i

|2d
i

,

where d
i

= max

f2F

i

|Y
f

|. Thus, the factor graph Rademacher complexities of linear hypotheses in

H
1

scale as O(

p

log(N) max

i

|F
i

|2d
i

/m). An important observation is that |F
i

| and d
i

depend on

the observed sample. This shows that the expected size of the factor graph is crucial for learning in

this scenario. This should be contrasted with other existing structured prediction guarantees that we

discuss below, which assume a fixed upper bound on the size of the factor graph. Note that our result

shows that learning is possible even with an infinite set Y . To the best of our knowledge, this is the

first learning guarantee for learning with infinitely many classes.

2

A result similar to Lemma 5 has also been recently proven independently in [Maurer, 2016].
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Our learning guarantee for H
1

can additionally benefit from the sparsity of the feature mapping

and observed data. In particular, in many applications,  

f,j

is a binary indicator function that is

non-zero for a single (x, y) 2 X ⇥ Y
f

. For instance, in NLP,  

f,j

may indicate an occurrence of a

certain n-gram in the input x
i

and output y
i

. In this case, s =

P

m

i=1

|F
i

|2  m max

i

|F
i

|2 and the

complexity term is only in O(max

i

|F
i

|plog(N)/m), where N may depend linearly on d
i

.

3.3 Special cases and comparisons

Markov networks. For the pairwise Markov networks with a fixed number of substructures l studied

by Taskar et al. [2003], our equivalent factor graph admits l nodes, |F
i

| = l, and the maximum size

of Y
f

is d
i

= k2

if each substructure of a pair can be assigned one of k classes. Thus, if we apply

Corollary 10 with Hamming distance as our loss function and divide the bound through by l, to

normalize the loss to interval [0, 1] as in [Taskar et al., 2003], we obtain the following explicit form

of our guarantee for an additive empirical margin loss, for all h 2 H
2

:

R(h)  bRadd

S,⇢

(h) +

4⇤

2

r
2

⇢

r

2k2

m
+ 3

s

log

1

�

2m
.

This bound can be further improved by eliminating the dependency on k using an extension of our

contraction Lemma 5 to k · k1,2

(see Lemma 6). The complexity term of Taskar et al. [2003] is

bounded by a quantity that varies as

eO(

p

⇤

2

2

q2r2

2

/m), where q is the maximal out-degree of a factor

graph. Our bound has the same dependence on these key quantities, but with no logarithmic term

in our case. Note that, unlike the result of Taskar et al. [2003], our bound also holds for general

loss functions and different p-norm regularizers. Moreover, our result for a multiplicative empirical

margin loss is new, even in this special case.

Multi-class classification. For standard (unstructured) multi-class classification, we have |F
i

| = 1

and d
i

= c, where c is the number of classes. In that case, for linear hypotheses with norm-2

regularization, the complexity term of our bound varies as O(⇤

2

r
2

p

c/⇢2m) (Corollary 11). This

improves upon the best known general margin bounds of Kuznetsov et al. [2014], who provide a

guarantee that scales linearly with the number of classes instead. Moreover, in the special case where

an individual w

y

is learned for each class y 2 [c], we retrieve the recent favorable bounds given by Lei

et al. [2015], albeit with a somewhat simpler formulation. In that case, for any (x, y), all components

of the feature vector  (x, y) are zero, except (perhaps) for the N components corresponding to

class y, where N is the dimension of w

y

. In view of that, for example for a group-norm k · k
2,1

-

regularization, the complexity term of our bound varies as O(⇤r
p

(log c)/⇢2m), which matches the

results of Lei et al. [2015] with a logarithmic dependency on c (ignoring some complex exponents of

log c in their case). Additionally, note that unlike existing multi-class learning guarantees, our results

hold for arbitrary loss functions. See Corollary 12 for further details. Our sparsity-based bounds

can also be used to give bounds with logarithmic dependence on the number of classes when the

features only take values in {0, 1}. Finally, using Lemma 6 instead of Lemma 5, the dependency on

the number of classes can be further improved.

We conclude this section by observing that, since our guarantees are expressed in terms of the average

size of the factor graph over a given sample, this invites us to search for a hypothesis set H and

predictor h 2 H such that the tradeoff between the empirical size of the factor graph and empirical

error is optimal. In the next section, we will make use of the recently developed principle of Voted

Risk Minimization (VRM) [Cortes et al., 2015] to reach this objective.

4 Voted Risk Minimization

In many structured prediction applications such as natural language processing and computer vision,

one may wish to exploit very rich features. However, the use of rich families of hypotheses could lead

to overfitting. In this section, we show that it may be possible to use rich families in conjunction with

simpler families, provided that fewer complex hypotheses are used (or that they are used with less

mixture weight). We achieve this goal by deriving learning guarantees for ensembles of structured

prediction rules that explicitly account for the differing complexities between families. This will

motivate the algorithms that we present in Section 5.

6



Assume that we are given p families H
1

, . . . , H
p

of functions mapping from X ⇥ Y to R. Define the

ensemble family F = conv([p

k=1

H
k

), that is the family of functions f of the form f =

P

T

t=1

↵
t

h
t

,

where ↵ = (↵
1

, . . . , ↵
T

) is in the simplex � and where, for each t 2 [1, T ], h
t

is in H
k

t

for some

k
t

2 [1, p]. We further assume that RG

m

(H
1

)  RG

m

(H
2

)  . . .  RG

m

(H
p

). As an example, the

H
k

s may be ordered by the size of the corresponding factor graphs.

The main result of this section is a generalization of the VRM theory to the structured prediction

setting. The learning guarantees that we present are in terms of upper bounds on

bRadd

S,⇢

(h) and

bRmult

S,⇢

(h), which are defined as follows for all ⌧ � 0:

bRadd

S,⇢,⌧

(h) = E
(x,y)⇠S



�

⇤
✓

max

y

0 6=y

L(y0, y) + ⌧ � 1

⇢

⇥

h(x, y) � h(x, y0
)

⇤

◆�

(7)

bRmult

S,⇢,⌧

(h) = E
(x,y)⇠S



�

⇤
✓

max

y

0 6=y

L(y0, y)

⇣

1 + ⌧ � 1

⇢

[h(x, y) � h(x, y0
)]

⌘

◆�

. (8)

Here, ⌧ can be interpreted as a margin term that acts in conjunction with ⇢. For simplicity, we assume

in this section that |Y| = c < +1.

Theorem 3. Fix ⇢ > 0. For any � > 0, with probability at least 1 � � over the draw of a sample S
of size m, each of the following inequalities holds for all f 2 F:

R(f) � bRadd
S,⇢,1

(f)  4

p
2

⇢

T

X

t=1

↵
t

RG

m

(H
k

t

) + C(⇢, M, c, m, p),

R(f) � bRmult
S,⇢,1

(f)  4

p
2M

⇢

T

X

t=1

↵
t

RG

m

(H
k

t

) + C(⇢, M, c, m, p),

where C(⇢, M, c, m, p) =

2M

⇢

q

log p

m

+ 3M

r

l

4

⇢

2 log

�

c

2
⇢

2
m

4 log p

�

m

log p

m

+

log

2
�

2m

.

The proof of this theorem crucially depends on the theory we developed in Section 3 and is given in

Appendix A. As with Theorem 1, we also present a version of this result with empirical complexities

as Theorem 14 in the supplementary material. The explicit dependence of this bound on the parameter

vector ↵ suggests that learning even with highly complex hypothesis sets could be possible so long

as the complexity term, which is a weighted average of the factor graph complexities, is not too

large. The theorem provides a quantitative way of determining the mixture weights that should be

apportioned to each family. Furthermore, the dependency on the number of distinct feature map

families H
k

is very mild and therefore suggests that a large number of families can be used. These

properties will be useful for motivating new algorithms for structured prediction.

5 Algorithms

In this section, we derive several algorithms for structured prediction based on the VRM principle

discussed in Section 4. We first give general convex upper bounds (Section 5.1) on the structured

prediction loss which recover as special cases the loss functions used in StructSVM [Tsochantaridis

et al., 2005], Max-Margin Markov Networks (M3N) [Taskar et al., 2003], and Conditional Random

Field (CRF) [Lafferty et al., 2001]. Next, we introduce a new algorithm, Voted Conditional Random

Field (VCRF) Section 5.2, with accompanying experiments as proof of concept. We also present

another algorithm, Voted StructBoost (VStructBoost), in Appendix C.

5.1 General framework for convex surrogate losses

Given (x, y) 2 X ⇥ Y , the mapping h 7! L(h(x), y) is typically not a convex function of h, which

leads to computationally hard optimization problems. This motivates the use of convex surrogate

losses. We first introduce a general formulation of surrogate losses for structured prediction problems.

Lemma 4. For any u 2 R
+

, let �
u

: R ! R be an upper bound on v 7! u1

v0

. Then, the following
upper bound holds for any h 2 H and (x, y) 2 X ⇥ Y ,

L(h(x), y)  max

y

0 6=y

�L(y0
,y)

(h(x, y) � h(x, y0
)). (9)

7



The proof is given in Appendix A. This result defines a general framework that enables us to

straightforwardly recover many of the most common state-of-the-art structured prediction algorithms

via suitable choices of �

u

(v): (a) for �

u

(v) = max(0, u(1�v)), the right-hand side of (9) coincides

with the surrogate loss defining StructSVM [Tsochantaridis et al., 2005]; (b) for �

u

(v) = max(0, u�
v), it coincides with the surrogate loss defining Max-Margin Markov Networks (M3N) [Taskar et al.,

2003] when using for L the Hamming loss; and (c) for �

u

(v) = log(1 + eu�v

), it coincides with the

surrogate loss defining the Conditional Random Field (CRF) [Lafferty et al., 2001].

Moreover, alternative choices of �

u

(v) can help define new algorithms. In particular, we will refer to

the algorithm based on the surrogate loss defined by �

u

(v) = ue�v

as StructBoost, in reference to the

exponential loss used in AdaBoost. Another related alternative is based on the choice �

u

(v) = eu�v

.

See Appendix C, for further details on this algorithm. In fact, for each �

u

(v) described above, the

corresponding convex surrogate is an upper bound on either the multiplicative or additive margin

loss introduced in Section 3. Therefore, each of these algorithms seeks a hypothesis that minimizes

the generalization bounds presented in Section 3. To the best of our knowledge, this interpretation

of these well-known structured prediction algorithms is also new. In what follows, we derive new

structured prediction algorithms that minimize finer generalization bounds presented in Section 4.

5.2 Voted Conditional Random Field (VCRF)

We first consider the convex surrogate loss based on �

u

(v) = log(1 + eu�v

), which corresponds

to the loss defining CRF models. Using the monotonicity of the logarithm and upper bounding the

maximum by a sum gives the following upper bound on the surrogate loss holds:

max

y

0 6=y

log(1 + eL(y,y

0
)�w·( (x,y)� (x,y

0
))

)  log

⇣

X

y

02Y
eL(y,y

0
)�w·( (x,y)� (x,y

0
))

⌘

,

which, combined with VRM principle leads to the following optimization problem:

min

w

1

m

m

X

i=1

log

✓

X

y2Y
eL(y,y

i

)�w·( (x

i

,y

i

)� (x

i

,y))

◆

+

p

X

k=1

(�r
k

+ �)kw
k

k
1

, (10)

where r
k

= r1|F (k)|plog N . We refer to the learning algorithm based on the optimization

problem (10) as VCRF. Note that for � = 0, (10) coincides with the objective function of L
1

-

regularized CRF. Observe that we can also directly use max

y

0 6=y

log(1 + eL(y,y

0
)�w·� (x,y,y

0
)

) or its

upper bound

P

y

0 6=y

log(1 + eL(y,y

0
)�w·� (x,y,y

0
)

) as a convex surrogate. We can similarly derive

an L
2

-regularization formulation of the VCRF algorithm. In Appendix D, we describe efficient

algorithms for solving the VCRF and VStructBoost optimization problems.

6 Experiments

In Appendix B, we corroborate our theory by reporting experimental results suggesting that the

VCRF algorithm can outperform the CRF algorithm on a number of part-of-speech (POS) datasets.

7 Conclusion

We presented a general theoretical analysis of structured prediction. Our data-dependent margin

guarantees for structured prediction can be used to guide the design of new algorithms or to derive

guarantees for existing ones. Its explicit dependency on the properties of the factor graph and on

feature sparsity can help shed new light on the role played by the graph and features in generalization.

Our extension of the VRM theory to structured prediction provides a new analysis of generalization

when using a very rich set of features, which is common in applications such as natural language

processing and leads to new algorithms, VCRF and VStructBoost. Our experimental results for

VCRF serve as a proof of concept and motivate more extensive empirical studies of these algorithms.
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