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Abstract

Good sparse approximations are essential for practical inference in Gaussian
Processes as the computational cost of exact methods is prohibitive for large
datasets. The Fully Independent Training Conditional (FITC) and the Variational
Free Energy (VFE) approximations are two recent popular methods. Despite
superficial similarities, these approximations have surprisingly different theoretical
properties and behave differently in practice. We thoroughly investigate the two
methods for regression both analytically and through illustrative examples, and
draw conclusions to guide practical application.

1 Introduction

Gaussian Processes (GPs) [1] are a flexible class of probabilistic models. Perhaps the most prominent
practical limitation of GPs is that the computational requirement of an exact implementation scales
as O(N3) time, and as O(N2) memory, where N is the number of training cases. Fortunately,
recent progress has been made in developing sparse approximations, which retain the favourable
properties of GPs but at a lower computational cost, typically O(NM2) time and O(NM) memory
for some chosen M < N . All sparse approximations rely on focussing inference on a small number
of quantities, which represent approximately the entire posterior over functions. These quantities
can be chosen differently, e.g., function values at certain input locations, properties of the spectral
representations [2], or more abstract representations [3]. Similar ideas are used in random feature
expansions [4, 5].

Here we focus on methods that represent the approximate posterior using the function value at a set of
M inducing inputs (also known as pseudo-inputs). These methods include the Deterministic Training
Conditional (DTC) [6] and the Fully Independent Training Conditional (FITC) [7], see [8] for a
review, as well as the Variational Free Energy (VFE) approximation [9]. The methods differ both in
terms of the theoretical approach in deriving the approximation, and in terms of how the inducing
inputs are handled. Broadly speaking, inducing inputs can either be chosen from the training set
(e.g. at random) or be optimised over. In this paper we consider the latter, as this will generally allow
for the best trade-off between accuracy and computational requirements. Training the GP entails
jointly optimizing over inducing inputs and hyperparameters.

In this work, we aim to thoroughly investigate and characterise the difference in behaviour of the FITC
and VFE approximations. We investigate the biases of the bounds when learning hyperparameters,
where each method allocates its modelling capacity, and the optimisation behaviour. In Section 2
we briefly introduce inducing point methods and state the two algorithms using a unifying notation.
In Section 3 we discuss properties of the two approaches, both theoretical and practical. Our aim is
to understand the approximations in detail in order to know under which conditions each method is
likely to succeed or fail in practice. We highlight issues that may arise in practical situations and how
to diagnose and possibly avoid them. Some of the properties of the methods have been previously
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reported in the literature; our aim here is a more complete and comparative approach. We draw
conclusions in Section 4.

2 Sparse Gaussian Processes

A Gaussian Process is a flexible distribution over functions, with many useful analytical properties. It
is fully determined by its mean m(x) and covariance k(x,x′) functions. We assume the mean to be
zero, without loss of generality. The covariance function determines properties of the functions, like
smoothness, amplitude, etc. A finite collection of function values at inputs {xi} follows a Gaussian
distribution N (f ; 0,Kff ), where [Kff ]ij = k(xi,xj).

Here we revisit the GP model for regression [1]. We model the function of interest f(·) using a GP
prior, and noisy observations at the input locations X = {xi}i are observed in the vector y.

p(f) = N (f ; 0,Kff ) p(y|f) =
N∏
n=1

N
(
yn; fn, σ

2
n

)
(1)

Throughout, we employ a squared exponential covariance function k(x, x′) = s2f exp(− 1
2 |x −

x′|2/`2), but our results only rely on the decay of covariances with distance. The hyperparameter θ
contains the signal variance s2f , the lengthscale ` and the noise variance σ2

n, and is suppressed in the
notation.

To make predictions, we follow the common approach of first determining θ by optimising the
marginal likelihood and then marginalising over the posterior of f :

θ∗ = argmax
θ

p(y|θ) p(y∗|y) = p(y∗,y)
p(y)

=

∫
p(y∗|f∗)p(f∗|f)p(f |y)dfdf∗ (2)

While the marginal likelihood, the posterior and the predictive distribution all have closed-form
Gaussian expressions, the cost of evaluating them scales asO(N3) due to the inversion of Kff +σ2

nI ,
which is impractical for many datasets.

Over the years, the two inducing point methods that have remained most influential are FITC [7]
and VFE [9]. Unlike previously proposed methods (see [6, 10, 8]), both FITC and VFE provide an
approximation to the marginal likelihood which allows both the hyperparameters and inducing inputs
to be learned from the data through gradient based optimisation. Both methods rely on the low rank
matrix Qff = KfuK

−1
uuKuf instead of the full rank Kff to reduce the size of any matrix inversion to

M . Note that for most covariance functions, the eigenvalues of Kuu are not bounded away from zero.
Any practical implementation will have to address this to avoid numerical instability. We follow the
common practice of adding a tiny diagonal jitter term εI to Kuu before inverting.

2.1 Fully Independent Training Conditional (FITC)

Over the years, FITC has been formulated in several different ways. A form of FITC first appeared in
an online learning setting by Csató and Opper [11], derived from the viewpoint of approximating the
full GP posterior. Snelson and Ghahramani [7] introduced FITC as approximate inference in a model
with a modified likelihood and proposed using its marginal likelihood to train the hyperparameters and
inducing inputs jointly. An alternate interpretation where the prior is modified, but exact inference is
performed, was presented in [8], unifying it with other techniques. The latest interesting development
came with the connection that FITC can be obtained by approximating the GP posterior using
Expectation Propagation (EP) [12, 13, 14].

Using the interpretation of modifying the prior to

p(f) = N (f ; 0, Qff + diag[Kff −Qff ]) (3)

we obtain the objective function in Eq. (5). We would like to stress, however, that this modification
gives exactly the same procedure as approximating the full GP posterior with EP. Regardless of the
fact that that FITC can be seen as a completely different model, we aim to characterise it as an
approximation to the full GP.
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2.2 Variational Free Energy (VFE)

Variational inference can also be used to approximate the true posterior. We follow the derivation
by Titsias [9] and bound the marginal likelihood, by instantiating extra function values on the latent
Gaussian process u at locations Z,1 followed by lower bounding the marginal likelihood. To ensure
efficient calculation, q(u, f) is chosen to factorise as q(u)p(f |u). This removes terms with K−1ff :

log p(y) ≥
∫
q(u, f) log

p(y|f)���p(f |u)p(u)
���p(f |u)q(u) dudf (4)

The optimal q(u) can be found by variational calculus resulting in the lower bound in Eq. (5).

2.3 Common notation

The objective functions for both VFE and FITC look very similar. In the following discussion we
will refer to a common notation of their negative log marginal likelihood (NLML) F , which will be
minimised to train the methods:

F =
N

2
log(2π) +

1

2
log |Qff +G|︸ ︷︷ ︸

complexity penalty

+
1

2
yT(Qff +G)−1y︸ ︷︷ ︸

data fit

+
1

2σ2
n

tr(T )︸ ︷︷ ︸
trace term

, (5)

where GFITC = diag[Kff −Qff ] + σ2
nI GVFE = σ2

nI (6)
TFITC = 0 TVFE = Kff −Qff . (7)

The common objective function has three terms, of which the data fit and complexity penalty have
direct analogues to the full GP. The data fit term penalises the data lying outside the covariance ellipse
Qff +G. The complexity penalty is the integral of the data fit term over all possible observations
y. It characterises the volume of possible datasets that are compatible with the data fit term. This
can be seen as the mechanism of Occam’s razor [16], by penalising the methods for being able to
predict too many datasets. The trace term in VFE ensures that the objective function is a true lower
bound to the marginal likelihood of the full GP. Without this term, VFE is identical to the earlier DTC
approximation [6] which can grossly over-estimate the marginal likelihood. The trace term penalises
the sum of the conditional variances at the training inputs, conditioned on the inducing inputs [17].
Intuitively, it ensures that VFE not only models this specific dataset y well, but also approximates the
covariance structure of the full GP Kff .

3 Comparative behaviour

As our main test case we use the one dimensional dataset2 considered in [7, 9] with 200 input-output
pairs. Of course, sparse methods are not necessary for this toy problem, but all of the issues we raise
are illustrated nicely in this one dimensional task which can easily be plotted. In Sections 3.1 to 3.3
we illustrate issues relating to the objecctive functions. These properties are independent of how the
method is optimised. However, whether they are encountered in practice can depend on optimiser
dynamics, which we discuss in Sections 3.4 and 3.5.

3.1 FITC can severely underestimate the noise variance, VFE overestimates it

In the full GP with Gaussian likelihood we assume a homoscedastic (input independent) noise model
with noise variance parameter σ2

n. It fully characterises the uncertainty left after completely learning
the latent function. In this section we show how FITC can also use the diagonal term diag(Kff −Qff )
in GFITC as heteroscedastic (input dependent) noise [7] to account for these differences, thus,
invalidating the above interpretation of the noise variance parameter. In fact, the FITC objective
function encourages underestimation of the noise variance, whereas the VFE bound encourages
overestimation. The latter is in line with previously reported biases of variational methods [18].

Fig. 1 shows the configuration most preferred by the FITC objective for a subset of 100 data points
of the Snelson dataset, found by an exhaustive manual search for a minimum over hyperparameters,

1Matthews et al. [15] show that this procedure approximates the posterior over the entire process f correctly.
2Obtained from http://www.gatsby.ucl.ac.uk/~snelson/
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inducing inputs and number of inducing points. The noise variance is shrunk to practically zero,
despite the mean prediction not going through every data point. Note how the mean still behaves well
and how the training data lie well within the predictive variance. Only when considering predictive
probabilities will this behaviour cause diminished performance. VFE, on the other hand, is able to
approximate the posterior predictive distribution almost exactly.

FITC (nlml = 23.16, σn = 1.93 · 10−4) VFE (nlml = 38.86, σn = 0.286)

Figure 1: Behaviour of FITC and VFE on a subset of 100 data points of the Snelson dataset for 8
inducing inputs (red crosses indicate inducing inputs; red lines indicate mean and 2σ) compared to
the prediction of the full GP in grey. Optimised values for the full GP: nlml = 34.15, σn = 0.274

For both approximations, the complexity penalty decreases with decreased noise variance, by reducing
the volume of datasets that can be explained. For a full GP and VFE this is accompanied by a data
fit penalty for data points lying far away from the predictive mean. FITC, on the other hand, has an
additional mechanism to avoid this penalty: its diagonal correction term diag(Kff −Qff ). This term
can be seen as an input dependent or heteroscedastic noise term (discussed as a modelling advantage
by Snelson and Ghahramani [7]), which is zero exactly at an inducing input, and which grows to the
prior variance away from an inducing input. By placing the inducing inputs near training data that
happen to lie near the mean, the heteroscedastic noise term is locally shrunk, resulting in a reduced
complexity penalty. Data points both far from the mean and far from inducing inputs do not incur a
data fit penalty, as the heteroscedastic noise term has increased around these points. This mechanism
removes the need for the homoscedastic noise to explain deviations from the mean, such that σ2

n can
be turned down to reduce the complexity penalty further.

This explains the extreme pinching (severely reduced noise variance) observed in Fig. 1, also see,
e.g., [9, Fig. 2]. In examples with more densely packed data, there may not be any places where a
near-zero noise point can be placed without incurring a huge data-fit penalty. However, inducing
inputs will be placed in places where the data happens to randomly cluster around the mean, which
still results in a decreased noise estimate, albeit less extreme, see Figs. 2 and 3 where we use all 200
data points.

Remark 1 FITC has an alternative mechanism to explain deviations from the learned function than
the likelihood noise and will underestimate σ2

n as a consequence. In extreme cases, σ2
n can incorrectly

be estimated to be almost zero.

As a consequence of this additional mechanism, σ2
n can no longer be interpreted in the same way

as for VFE or the full GP. σ2
n is often interpreted as the amount of uncertainty in the dataset which

can not be explained. Based on this interpretation, a low σ2
n is often used as an indication that the

dataset is being fitted well. Active learning applications rely on a similar interpretation to differentiate
between inherent noise, and uncertainty in the latent GP which can be reduced. FITC’s different
interpretation of σ2

n will cause efforts like these to fail.

VFE, on the other hand, is biased towards over-estimating the noise variance, because of both the data
fit and the trace term. Qff +σ2

nI has N −M eigenvectors with an eigenvalue of σ2
n, since the rank of

Qff is M . Any component of y in these directions will result in a larger data fit penalty than for Kff ,
which can only be reduced by increasing σ2

n. The trace term can also be reduced by increasing σ2
n.

Remark 2 The VFE objective tends to over-estimate the noise variance compared to the full GP.

3.2 VFE improves with additional inducing inputs, FITC may ignore them

Here we investigate the behaviour of each method when more inducing inputs are added. For both
methods, adding an extra inducing input gives it an extra basis function to model the data with. We
discuss how and why VFE always improves, while FITC may deteriorate.
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Figure 2: Top: Fits for FITC and VFE on 200 data points of the Snelson dataset for M = 7 optimised
inducing inputs (black). Bottom: Change in objective function from adding an inducing input
anywhere along the x-axis (no further hyperparameter optimisation performed). The overall change is
decomposed into the change in the individual terms (see legend). Two particular additional inducing
inputs and their effect on the predictive distribution shown in red and blue.

Fig. 2 shows an example of how the objective function changes when an inducing input is added
anywhere in the input domain. While the change in objective function looks reasonably smooth
overall, there are pronounced spikes for both, FITC and VFE. These return the objective to the value
without the additional inducing input and occur at the locations of existing inducing inputs. We
discuss the general change first before explaining the spikes.

Mathematically, adding an inducing input corresponds to a rank 1 update of Qff , and can be shown to
always improve VFE’s bound3, see Supplement for a proof. VFE’s complexity penalty increases due
to an extra non-zero eigenvalue in Qff , but gains in data fit and trace.

Remark 3 VFE’s posterior and marginal likelihood approximation become more accurate (or remain
unchanged) regardless of where a new inducing input is placed.

For FITC, the objective can change either way. Regardless of the change in objective, the heterosce-
dastic noise is decreased at all points (see Supplement for proof). For a squared exponential kernel,
the decrease is strongest around the newly placed inducing input. This decrease has two effects. One,
it reduces the complexity penalty since the diagonal component of Qff +G is reduced and replaced
by a more strongly correlated Qff . Two, it worsens the data fit term as the heteroscedastic term is
required to fit the data when the homoscedastic noise is underestimated. Fig. 2 shows reduced error
bars with several data points now outside of the 95% prediction bars. Also shown is a case where an
additional inducing input improves the objective, where the extra correlations outweigh the reduced
heteroscedastic noise.

Both VFE and FITC exhibit pathological behaviour (spikes) when inducing inputs are clumped, that
is, when they are placed exactly on top of each other. In this case, the objective function has the
same value as when all duplicate inducing inputs were removed, see Supplement for a proof. In other
words, for all practical purposes, a model with duplicate inducing inputs reduces to a model with
fewer, individually placed inducing inputs.

Theoretically, these pathologies only occur at single points, such that no gradients towards or away
from them could exist and they would never be encountered. In practise, however, these peaks
are widend by a finite jitter that is added to Kuu to ensure it remains well conditioned enough
to be invertible. This finite width provides the gradients that allow an optimiser to detect these
configurations.

As VFE always improves with additional inducing inputs, these configurations must correspond to
maxima of the optimisation surface and clumping of inducing inputs does not occur for VFE. For

3Matthews [19] independently proved this result by considering the KL divergence between processes. Titsias
[9] proved this result for the special case when the new inducing input is selected from the training data.

5



FITC, configurations with clumped inducing inputs can and often do correspond to minima of the
optimisation surface. By placing them on top of each other, FITC can avoid the penalty of adding
an extra inducing input and can gain the bonus from the heteroscedastic noise. Clumping, thus,
constitutes a mechanism that allows FITC to effectively remove inducing inputs at no cost.

We illustrate this behaviour in Fig. 3 for 15 randomly initialised inducing inputs. FITC places some
of them exactly on top of each other, whereas VFE spreads them out and recovers the full GP well.

FITC VFE

Figure 3: Fits for 15 inducing inputs for FITC and VFE (initial as black crosses, optimised red
crosses). Even following joint optimisation of inducing inputs and hyperparameters, FITC avoids the
penalty of added inducing inputs by clumping some of them on top of each other (shown as a single
red cross). VFE spreads out the inducing inputs to get closer to the true full GP posterior.

Remark 4 In FITC, having a good approximation Qff to Kff needs to be traded off with the gains
coming from the heteroscedastic noise. FITC does not always favour a more accurate approximation
to the GP.

Remark 5 FITC avoids losing the gains of the heteroscedastic noise by placing inducing inputs on
top of each other, effectively removing them.

3.3 FITC does not recover the full GP posterior, VFE does

In the previous section we showed that FITC may not utilise additional resources to model the data.
The clumping behaviour, thus, explains why the FITC objective may not recover the full GP, even
when given enough resources.

Both VFE and FITC can recover the true posterior by placing an inducing input on every training
input [9, 12]. For VFE, this is a global minimum, since the KL gap to the true marginal likelihood is
zero. For FITC, however, this configuration is not stable and the objective can still be improved by
clumping of inducing inputs, as Matthews [19] has shown empirically by aggressive optimisation.
The derivative of the inducing inputs is zero for the initial configuration, but adding jitter subtly
makes this behaviour more obvious by perturbing the gradients, similar to the widening of the peaks
in Fig. 2. In Fig. 4 we reproduce the observations in [19, Sec 4.6.1 and Fig. 4.2] on a subset of 100
data points of the Snelson dataset: VFE remains at the minimum and, thus, recovers the full GP,
whereas FITC improves its objective and clumps the inducing inputs considerably.

Method nlml initial nlml optimised
Full GP − 33.8923
VFE 33.8923 33.8923
FITC 33.8923 28.3869 0 2 4 6

0
2
4
6
8

initial

op
tim

is
ed VFE FITC

Figure 4: Results of optimising VFE and FITC after initialising at the solution that gives the correct
posterior and marginal likelihood as in [19, Sec 4.6.1]: FITC moves to a significantly different
solution with better objective value (Table, left) and clumped inducing inputs (Figure, right).

Remark 6 FITC generally does not recover the full GP, even when it has enough resources.

3.4 FITC relies on local optima

So far, we have observed some cases where FITC fails to produce results in line with the full GP, and
characterised why. However, in practice, FITC has performed well, and pathological behaviour is not
always observed. In this section we discuss the optimiser dynamics and show that they help FITC
behave reasonably.
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To demonstrate this behaviour, we consider a 4d toy dataset: 1024 training and 1024 test samples
drawn from a 4d Gaussian Process with isotropic squared exponential covariance function (l =
1.5, sf = 1) and true noise variance σ2

n = 0.01. The data inputs were drawn from a Gaussian centred
around the origin, but similar results were obtained for uniformly sampled inputs. We fit both FITC
and VFE to this dataset with the number of inducing inputs ranging from 16 to 1024, and compare a
representative run to the full GP in Fig. 5.

24 27 210

−5

0

5
·102

# inducing inputs

NLML

24 27 210

10−3

10−1

# inducing inputs

Optimised σn

24 27 210
−0.8

−0.6

−0.4

−0.2

0

# inducing inputs

Neg. log pred. prob.

24 27 210
2

4

6

8

·10−2

# inducing inputs

SMSE
GP

FITC
VFE

Figure 5: Optimisation behaviour of VFE and FITC for varying number of inducing inputs compared
to the full GP. We show the objective function (negative log marginal likelihood), the optimised noise
σn, the negative log predictive probability and standardised mean squared error as defined in [1].

VFE monotonically approaches the values of the full GP but initially overestimates the noise variance,
as discussed in Section 3.1. Conversely, we can identify three regimes for the objective function of
FITC: 1) Monotonic improvement for few inducing inputs, 2) a region where FITC over-estimates
the marginal likelihood, and 3) recovery towards the full GP for many inducing inputs. Predictive
performance follows a similar trend, first improving, then declining while the bound is estimated to
be too high, followed by a recovery. The recovery is counter to the usual intuition that over-fitting
worsens when adding more parameters.

We explain the behaviour in these three regimes as follows: When the number of inducing inputs
are severely limited (regime 1), FITC needs to place them such that Kff is well approximated. This
correlates most points to some degree, and ensures a reasonable data fit term. The marginal likelihood
is under-estimated due to lack of a flexibility in Qff . This behaviour is consistent with the intuition
that limiting model capacity prevents overfitting.

As the number of inducing inputs increases (regime 2), the marginal likelihood is over-estimated and
the noise drastically under-estimated. Additionally, performance in terms of log predictive probability
deteriorates. This is the regime closest to FITC’s behaviour in Fig. 1. There are enough inducing
inputs such that they can be placed such that a bonus can be gained from the heteroscedastic noise,
without gaining a complexity penalty from losing long scale correlations.

Finally, in regime 3, FITC starts to behave more like a regular GP in terms of marginal likelihood,
predictive performance and noise variance parameter σn. FITC’s ability to use heteroscedastic noise
is reduced as the approximate covariance matrix Qff is closer to the true covariance matrix Kff when
many (initial) inducing input are spread over the input space.

In the previous section we showed that after adding a new inducing input, a better minimum obtained
without the extra inducing input could be recovered by clumping. So it is clear that the minimum that
was found with fewer active inducing inputs still exists in the optimisation surface of many inducing
inputs; the optimiser just does not find it.

Remark 7 When running FITC with many inducing inputs its resemblance to the full GP solution
relies on local optima, rather than the objective function changing.

3.5 VFE is hindered by local optima

So far we have seen that the VFE objective function is a true lower bound on the marginal likelihood
and does not share the same pathologies as FITC. Thus, when optimising, we really are interested in
finding a global optimum. The VFE objective function is not completely trivial to optimise, and often
tricks, such as initialising the inducing inputs with k-means and initially fixing the hyperparameters
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[20, 21], are required to find a good optimum. Others have commented that VFE has the tendency to
underfit [3]. Here we investigate the underfitting claim and relate it to optimisation behaviour.

As this behaviour is not observable in our 1D dataset, we illustrate it on the pumadyn32nm dataset4
(32 dimensions, 7168 training, 1024 test), see Table 1 for the results of a representative run with
random initial conditions and M = 40 inducing inputs.

Method NLML/N σn inv. lengthscales RMSE

GP (SoD) −0.099 0.196 · · · 0.209

FITC −0.145 0.004 · · · 0.212

VFE 1.419 1 · · · 0.979

VFE (frozen) 0.151 0.278 · · · 0.276

VFE (init FITC) −0.096 0.213 · · · 0.212

Table 1: Results for pumadyn32nm dataset. We show negative log marginal likelihood (NLML)
divided by number of training points, the optimised noise variance σ2

n, the ten most dominant inverse
lengthscales and the RMSE on test data. Methods are full GP on 2048 training samples, FITC, VFE,
VFE with initially frozen hyperparameters, VFE initialised with the solution obtained by FITC.

Using a squared exponential ARD kernel with separate lengthscales for every dimension, a full GP
on a subset of data identified four lengthscales as important to model the data while scaling the other
28 lengthscales to large values (in Table 1 we plot the inverse lengthscales).

FITC was consistently able to identify the same four lengthscales and performed similarly compared
to the full GP but scaled down the noise variance σ2

n to almost zero. The latter is consistent with our
earlier observations of strong pinching in a regime with low-density data as is the case here due to
the high dimensionality. VFE, on the other hand, was unable to identify these relevant lengthscales
when jointly optimising the hyperparameters and inducing inputs, and only identified some of the
them when initially freezing the hyperparameters. One might say that VFE “underfits” in this case.
However, we can show that VFE still recognises a good solution: When we initialised VFE with the
FITC solution it consistently obtained a good fit to the model with correctly identified lengthscales
and a noise variance that was close to the full GP.

Remark 8 VFE has a tendency to find under-fitting solutions. However, this is an optimisation issue.
The bound correctly identifies good solutions.

4 Conclusion

In this work, we have thoroughly investigated and characterised the differences between FITC
and VFE, both in terms of their objective function and their behaviour observed during practical
optimisation. We highlight several instances of undesirable behaviour in the FITC objective: over-
estimation of the marginal likelihood, sometimes severe under-estimation of the noise variance
parameter, wasting of modelling resources and not recovering the true posterior. The common
practice of using the noise variance parameter as a diagnostic for good model fitting is unreliable.
In contrast, VFE is a true bound to the marginal likelihood of the full GP and behaves predictably:
It correctly identifies good solutions, always improves with extra resources and recovers the true
posterior when possible. In practice however, the pathologies of the FITC objective do not always
show up, thanks to “good” local optima and (unintentional) early stopping. While VFE’s objective
recognises a good configuration, it is often more susceptible to local optima and harder to optimise
than FITC.

Which of these pathologies show up in practise depends on the dataset in question. However, based
on the superior properties of the VFE objective function, we recommend using VFE, while paying
attention to optimisation difficulties. These can be mitigated by careful initialisation, random restarts,
other optimisation tricks and comparison to the FITC solution to guide VFE optimisation.
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