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Abstract
Accuracy and interpretability are two dominant features of successful predictive
models. Typically, a choice must be made in favor of complex black box models
such as recurrent neural networks (RNN) for accuracy versus less accurate but
more interpretable traditional models such as logistic regression. This tradeoff
poses challenges in medicine where both accuracy and interpretability are impor-
tant. We addressed this challenge by developing the REverse Time AttentIoN
model (RETAIN) for application to Electronic Health Records (EHR) data. RETAIN
achieves high accuracy while remaining clinically interpretable and is based on
a two-level neural attention model that detects influential past visits and signifi-
cant clinical variables within those visits (e.g. key diagnoses). RETAIN mimics
physician practice by attending the EHR data in a reverse time order so that recent
clinical visits are likely to receive higher attention. RETAIN was tested on a large
health system EHR dataset with 14 million visits completed by 263K patients over
an 8 year period and demonstrated predictive accuracy and computational scalabil-
ity comparable to state-of-the-art methods such as RNN, and ease of interpretability
comparable to traditional models.

1 Introduction

The broad adoption of Electronic Health Record (EHR) systems has opened the possibility of
applying clinical predictive models to improve the quality of clinical care. Several systematic reviews
have underlined the care quality improvement using predictive analysis [7, 25, 5, 20]. EHR data
can be represented as temporal sequences of high-dimensional clinical variables (e.g., diagnoses,
medications and procedures), where the sequence ensemble represents the documented content of
medical visits from a single patient. Traditional machine learning tools summarize this ensemble into
aggregate features, ignoring the temporal and sequence relationships among the feature elements.
The opportunity to improve both predictive accuracy and interpretability is likely to derive from
effectively modeling temporality and high-dimensionality of these event sequences.

Accuracy and interpretability are two dominant features of successful predictive models. There is a
common belief that one has to trade accuracy for interpretability using one of three types of traditional
models [6]: 1) identifying a set of rules (e.g. via decision trees [27]), 2) case-based reasoning by
finding similar patients (e.g. via k-nearest neighbors [18] and distance metric learning [36]), and 3)
identifying a list of risk factors (e.g. via LASSO coefficients [15]). While interpretable, all of these
models rely on aggregated features, ignoring the temporal relation among features inherent to EHR
data. As a consequence, model accuracy is sub-optimal. Latent-variable time-series models, such as
[34, 35], account for temporality, but often have limited interpretation due to abstract state variables.

Recently, recurrent neural networks (RNN) have been successfully applied in modeling sequential
EHR data to predict diagnoses [30] and disease progression [11, 14]. But, the gain in accuracy from
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(b) RETAIN model

Figure 1: Common attention models vs. RETAIN, using folded diagrams of RNNs. (a) Standard
attention mechanism: the recurrence on the hidden state vector vi hinders interpretation of the model.
(b) Attention mechanism in RETAIN: The recurrence is on the attention generation components (hi or
gi) while the hidden state vi is generated by a simpler more interpretable output.

use of RNNs is at the cost of model output that is notoriously difficult to interpret. While there have
been several attempts at directly interpreting RNNs [19, 26, 8], these methods are not sufficiently
developed for application in clinical care.

We have addressed this limitation using a modeling strategy known as RETAIN, a two-level neural
attention model for sequential data that provides detailed interpretation of the prediction results while
retaining the prediction accuracy comparable to RNN. To this end, RETAIN relies on an attention
mechanism modeled to represent the behavior of physicians during an encounter. A distinguishing
feature of RETAIN (see Figure 1) is to leverage sequence information using an attention generation
mechanism, while learning an interpretable representation. And emulating physician behaviors,
RETAIN examines a patient’s past visits in reverse time order, facilitating a more stable attention
generation. As a result, RETAIN identifies the most meaningful visits and quantifies visit specific
features that contribute to the prediction.

RETAIN was tested on a large health system EHR dataset with 14 million visits completed by 263K
patients over an 8 year period. We compared predictive accuracy of RETAIN to traditional machine
learning methods and to RNN variants using a case-control dataset to predict a future diagnosis of
heart failure. The comparative analysis demonstrates that RETAIN achieves comparable performance
to RNN in both accuracy and speed and significantly outperforms traditional models. Moreover,
using a concrete case study and visualization method, we demonstrate how RETAIN offers an intuitive
interpretation.

2 Methodology

We first describe the structure of sequential EHR data and our notation, then follow with a general
framework for predictive analysis in healthcare using EHR, followed by details of the RETAIN method.

EHR Structure and our Notation. The EHR data of each patient can be represented as a time-
labeled sequence of multivariate observations. Assuming we use r different variables, the n-th patient
of N total patients can be represented by a sequence of T (n) tuples (t

(n)
i ,x

(n)
i ) 2 R ⇥ Rr

, i =

1, . . . , T

(n). The timestamps t(n)i denotes the time of the i-th visit of the n-th patient and T

(n) the
number of visits of the n-th patient. To minimize clutter, we describe the algorithms for a single patient
and have dropped the superscript (n) whenever it is unambiguous. The goal of predictive modeling
is to predict the label at each time step yi 2 {0, 1}s or at the end of the sequence y 2 {0, 1}s. The
number of labels s can be more than one.

For example, in disease progression modeling (DPM) [11], each visit of a patient visit sequence is
represented by a set of varying number of medical codes {c1, c2, . . . , cn}. cj is the j-th code from
the vocabulary C. Therefore, in DPM, the number of variables r = |C| and input xi 2 {0, 1}|C| is
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a binary vector where the value one in the j-th coordinate indicates that cj was documented in i-th
visit. Given a sequence of visits x1, . . . ,xT , the goal of DPM is, for each time step i, to predict the
codes occurring at the next visit x2, . . . ,xT+1, with the number of labels s = |C|.
In case of learning to diagnose (L2D) [30], the input vector xi consists of continuous clinical measures.
If there are r different measurements, then xi 2 Rr. The goal of L2D is, given an input sequence
x1, . . . ,xT , to predict the occurrence of a specific disease (s = 1) or multiple diseases (s > 1).
Without loss of generality, we will describe the algorithm for DPM, as L2D can be seen as a special
case of DPM where we make a single prediction at the end of the visit sequence.

In the rest of this section, we will use the abstract symbol RNN to denote any recurrent neural
network variants that can cope with the vanishing gradient problem [3], such as LSTM [23], GRU
[9], and IRNN [29], with any depth (number of hidden layers).

2.1 Preliminaries on Neural Attention Models

Attention based neural network models are being successfully applied to image processing [1, 32, 21,
37], natural language processing [2, 22, 33] and speech recognition [12]. The utility of the attention
mechanism can be seen in the language translation task [2] where it is inefficient to represent an
entire sentence with one fixed-size vector because neural translation machines finds it difficult to
translate the given sentence represented by a single vector.

Intuitively, the attention mechanism for language translation works as follows: given a sentence of
length S in the original language, we generate h1, . . . ,hS , to represent the words in the sentence. To
find the j-th word in the target language, we generate attentions ↵j

i for i = 1, . . . , S for each word in
the original sentence. Then, we compute the context vector cj =

P
i ↵

j
ihi and use it to predict the

j-th word in the target language. In general, the attention mechanism allows the model to focus on a
specific word (or words) in the given sentence when generating each word in the target language.

We rely on a conceptually similar temporal attention mechanism to generate interpretable prediction
models using EHR data. Our model framework is motivated by and mimics how doctors attend to a
patient’s needs and explore the patient record, where there is a focus on specific clinical information
(e.g., key risk factors) working from the present to the past.

2.2 Reverse Time Attention Model RETAIN

Figure 2 shows the high-level overview of our model, where a central feature is to delegate a
considerable portion of the prediction responsibility to the process for generating attention weights.
This is intended to address, in part, the difficulty with interpreting RNNs where the recurrent weights
feed past information to the hidden layer. Therefore, to consider both the visit-level and the variable-
level (individual coordinates of xi) influence, we use a linear embedding of the input vector xi. That
is, we define

vi = Wembxi, (Step 1)
where vi 2 Rm denotes the embedding of the input vector xi 2 Rr, m the size of the embedding di-
mension, Wemb 2 Rm⇥r the embedding matrix to learn. We can alternatively use more sophisticated
yet interpretable representations such as those derived from multilayer perceptron (MLP) [13, 28].
MLP has been used for representation learning in EHR data [10].

We use two sets of weights, one for the visit-level attention and the other for variable-level attention,
respectively. The scalars ↵1, . . . ,↵i are the visit-level attention weights that govern the influence of
each visit embedding v1, . . . ,vi. The vectors �1, . . . ,�i are the variable-level attention weights that
focus on each coordinate of the visit embedding v1,1, v1,2, . . . , v1,m, . . . , vi,1, vi,2, . . . , vi,m.

We use two RNNs, RNN↵ and RNN�, to separately generate ↵’s and �’s as follows,

gi,gi�1, . . . ,g1 = RNN↵(vi,vi�1, . . . ,v1),

ej = w

>
↵gj + b↵, for j = 1, . . . , i

↵1,↵2, . . . ,↵i = Softmax(e1, e2, . . . , ei) (Step 2)
hi,hi�1, . . . ,h1 = RNN�(vi,vi�1, . . . ,v1)

�j = tanh

�
W�hj + b�

�
for j = 1, . . . , i, (Step 3)
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Figure 2: Unfolded view of RETAIN’s architecture: Given input sequence x1, . . . ,xi, we predict the
label yi. Step 1: Embedding, Step 2: generating ↵ values using RNN↵, Step 3: generating � values
using RNN�, Step 4: Generating the context vector using attention and representation vectors, and
Step 5: Making prediction. Note that in Steps 2 and 3 we use RNN in the reversed time.

where gi 2 Rp is the hidden layer of RNN↵ at time step i, hi 2 Rq the hidden layer of RNN�

at time step i and w↵ 2 Rp
, b↵ 2 R,W� 2 Rm⇥q and b� 2 Rm are the parameters to learn.

The hyperparameters p and q determine the hidden layer size of RNN↵ and RNN�, respectively.
Note that for prediction at each timestamp, we generate a new set of attention vectors ↵ and �. For
simplicity of notation, we do not include the index for predicting at different time steps. In Step 2,
we can use Sparsemax [31] instead of Softmax for sparser attention weights.

As noted, RETAIN generates the attention vectors by running the RNNs backward in time; i.e., RNN↵

and RNN� both take the visit embeddings in a reverse order vi,vi�1, . . . ,v1. Running the RNN
in reversed time order also offers computational advantages since the reverse time order allows us
to generate e’s and �’s that dynamically change their values when making predictions at different
time steps i = 1, 2, . . . , T . This ensures that the attention vectors are modified at each time step,
increasing the computational stability of the attention generation process.1

Using the generated attentions, we obtain the context vector ci for a patient up to the i-th visit as
follows,

ci =

iX

j=1

↵j�j � vj , (Step 4)

where � denotes element-wise multiplication. We use the context vector ci 2 Rm to predict the true
label yi 2 {0, 1}s as follows,

b
yi = Softmax(Wci + b), (Step 5)

where W 2 Rs⇥m and b 2 Rs are parameters to learn. We use the cross-entropy to calculate the
classification loss as follows,

L(x1, . . . ,xT ) = � 1

N

NX

n=1

1

T

(n)

T (n)X

i=1

⇣
y

>
i log(

b
yi) + (1� yi)

>
log(1� b

yi)

⌘
(1)

where we sum the cross entropy errors from all dimensions of b
yi. In case of real-valued output

yi 2 Rs, we can change the cross-entropy in Eq. (1) to, for example, mean squared error.

Overall, our attention mechanism can be viewed as the inverted architecture of the standard attention
mechanism for NLP [2] where the words are encoded by RNN and the attention weights are generated
by MLP. In contrast, our method uses MLP to embed the visit information to preserve interpretability
and uses RNN to generate two sets of attention weights, recovering the sequential information as
well as mimicking the behavior of physicians. Note that we did not use the timestamp of each visit
in our formulation. Using timestamps, however, provides a small improvement in the prediction
performance. We propose a method to use timestamps in Appendix A.

1For example, feeding visit embeddings in the original order to RNN↵ and RNN� will generate the same e1
and �1 for every time step i = 1, 2, . . . , T . Moreover, in many cases, a patient’s recent visit records deserve
more attention than the old records. Then we need to have ej+1 > ej which makes the process computationally
unstable for long sequences.
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3 Interpreting RETAIN

Finding the visits that contribute to prediction are derived using the largest ↵i, which is straightforward.
However, finding influential variables is slightly more involved as a visit is represented by an ensemble
of medical variables, each of which can vary in its predictive contribution. The contribution of each
variable is determined by v, � and ↵, and interpretation of ↵ alone informs which visit is influential
in prediction but not why.

We propose a method to interpret the end-to-end behavior of RETAIN. By keeping ↵ and � values
fixed as the attention of doctors, we analyze changes in the probability of each label yi,1, . . . , yi,s
in relation to changes in the original input x1,1, . . . , x1,r, . . . , xi,1, . . . , xi,r. The xj,k that yields the
largest change in yi,d will be the input variable with highest contribution. More formally, given the
sequence x1, . . . ,xi, we are trying to predict the probability of the output vector yi 2 {0, 1}s, which
can be expressed as follows

p(yi|x1, . . . ,xi) = p(yi|ci) = Softmax (Wci + b) (2)

where ci 2 Rm denotes the context vector. According to Step 4, ci is the sum of the visit embeddings
v1, . . . ,vi weighted by the attentions ↵’s and �’s. Therefore Eq (2) can be rewritten as follows,

p(yi|x1, . . . ,xi) = p(yi|ci) = Softmax

✓
W

⇣ iX

j=1

↵j�j � vj

⌘
+ b

◆
(3)

Using the fact that the visit embedding vi is the sum of the columns of Wemb weighted by each
element of xi, Eq (3) can be rewritten as follows,

p(yi|x1, . . . ,xi) = Softmax

✓
W

⇣ iX

j=1

↵j�j �
rX

k=1

xj,kWemb[:, k]

⌘
+ b

◆

= Softmax

✓ iX

j=1

rX

k=1

xj,k ↵jW

⇣
�j �Wemb[:, k]

⌘
+ b

◆
(4)

where xj,k is the k-th element of the input vector xj . Eq (4) can be completely deconstructed to the
variables at each input x1, . . . ,xi, which allows for calculating the contribution ! of the k-th variable
of the input xj at time step j  i, for predicting yi as follows,

!(yi, xj,k) = ↵jW(�j �Wemb[:, k])| {z }
Contribution coefficient

xj,k|{z}
Input value

, (5)

where the index i of yi is omitted in the ↵j and �j . As we have described in Section 2.2, we are
generating ↵’s and �’s at time step i in the visit sequence x1, . . . ,xT . Therefore the index i is always
assumed for ↵’s and �’s. Additionally, Eq (5) shows that when we are using a binary input value, the
coefficient itself is the contribution. However, when we are using a non-binary input value, we need
to multiply the coefficient and the input value xj,k to correctly calculate the contribution.

4 Experiments

We compared performance of RETAIN to RNNs and traditional machine learning methods. Given
space constraints, we only report the results on the learning to diagnose (L2D) task and summarize the
disease progression modeling (DPM) in Appendix C. The RETAIN source code is publicly available
at https://github.com/mp2893/retain.

4.1 Experimental setting
Source of data: The dataset consists of electronic health records from Sutter Health. The patients
are 50 to 80 years old adults chosen for a heart failure prediction model study. From the encounter
records, medication orders, procedure orders and problem lists, we extracted visit records consisting
of diagnosis, medication and procedure codes. To reduce the dimensionality while preserving the
clinical information, we used existing medical groupers to aggregate the codes into input variables.
The details of the medical groupers are given in the Appendix B. A profile of the dataset is summarized
in Table 1.
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Table 1: Statistics of EHR dataset. (D:Diagnosis, R:Medication, P:Procedure)
# of patients 263,683 Avg. # of codes in a visit 3.03
# of visits 14,366,030 Max # of codes in a visit 62
Avg. # of visits per patient 54.48 Avg. # of Dx codes in a visit 1.83
# of medical code groups 615 (D:283, R:94, P:238) Max # of Dx in a visit 42

Implementation details: We implemented RETAIN with Theano 0.8 [4]. For training the model, we
used Adadelta [38] with the mini-batch of 100 patients. The training was done in a machine equipped
with Intel Xeon E5-2630, 256GB RAM, two Nvidia Tesla K80’s and CUDA 7.5.

Baselines: For comparison, we completed the following models.

• Logistic regression (LR): We compute the counts of medical codes for each patient based on all
her visits as input variables and normalize the vector to zero mean and unit variance. We use the
resulting vector to train the logistic regression.

• MLP: We use the same feature construction as LR, but put a hidden layer of size 256 between
the input and output.

• RNN: RNN with two hidden layers of size 256 implemented by the GRU. Input sequences
x1, . . . ,xi are used. Logistic regression is applied to the top hidden layer. We use two layers of
RNN of to match the model complexity of RETAIN.

• RNN+↵M : One layer single directional RNN (hidden layer size 256) along time to generate the
input embeddings v1, . . . ,vi. We use the MLP with a single hidden layer of size 256 to generate
the visit-level attentions ↵1, . . . ,↵i. We use the input embeddings v1, . . . ,vi as the input to the
MLP. This baseline corresponds to Figure 1a.

• RNN+↵R: This is similar to RNN+↵M but use the reverse-order RNN (hidden layer size 256)
to generate the visit-level attentions ↵1, . . . ,↵i. We use this baseline to confirm the effectiveness
of generating the attentions using reverse time order.

The comparative visualization of the baselines are provided in Appendix D. We use the same
implementation and training method for the baselines as described above. The details on the hyper-
parameters, regularization and drop-out strategies for the baselines are described in Appendix B.

Evaluation measures: Model accuracy was measured by:

• Negative log-likelihood that measures the model loss on the test set. The loss can be calculated
by Eq (1).

• Area Under the ROC Curve (AUC) of comparing byi with the true label yi. AUC is more
robust to imbalanced positive/negative prediction labels, making it appropriate for evaluation of
classification accuracy in the heart failure prediction task.

We also report the bootstrap (10,000 runs) estimate of the standard deviation of the evaluation
measures.

4.2 Heart Failure Prediction

Objective: Given a visit sequence x1, . . . ,xT , we predicted if a primary care patient will be
diagnosed with heart failure (HF). This is a special case of DPM with a single disease outcome at
the end of the sequence. Since this is a binary prediction task, we use the logistic sigmoid function
instead of the Softmax in Step 5.

Cohort construction: From the source dataset, 3,884 cases are selected and approximately 10
controls are selected for each case (28,903 controls). The case/control selection criteria are fully
described in the supplementary section. Cases have index dates to denote the date they are diagnosed
with HF. Controls have the same index dates as their corresponding cases. We extract diagnosis codes,
medication codes and procedure codes in the 18-months window before the index date.

Training details: The patient cohort was divided into the training, validation and test sets in a
0.75:0.1:0.15 ratio. The validation set was used to determine the values of the hyper-parameters. See
Appendix B for details of hyper-parameter tuning.
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Table 2: Heart failure prediction performance of RETAIN and the baselines
Model Test Neg Log Likelihood AUC Train Time / epoch Test Time
LR 0.3269± 0.0105 0.7900± 0.0111 0.15s 0.11s
MLP 0.2959± 0.0083 0.8256± 0.0096 0.25s 0.11s
RNN 0.2577± 0.0082 0.8706± 0.0080 10.3s 0.57s
RNN+↵M 0.2691± 0.0082 0.8624± 0.0079 6.7s 0.48s
RNN+↵R 0.2605± 0.0088 0.8717± 0.0080 10.4s 0.62s
RETAIN 0.2562± 0.0083 0.8705± 0.0081 10.8s 0.63s

Results: Logistic regression and MLP underperformed compared to the four temporal learning
algorithms (Table 2). RETAIN is comparable to the other RNN variants in terms of prediction
performance while offering the interpretation benefit.

Note that RNN+↵R model are a degenerated version of RETAIN with only scalar attention, which is
still a competitive model as shown in table 2. This confirms the efficiency of generating attention
weights using the RNN. However, RNN+↵R model only provides scalar visit-level attention, which
is not sufficient for healthcare applications. Patients often receives several medical codes at a single
visit, and it will be important to distinguish their relative importance to the target. We show such a
case study in section 4.3.

Table 2 also shows the scalability of RETAIN, as its training time (the number of seconds to train
the model over the entire training set once) is comparable to RNN. The test time is the number
of seconds to generate the prediction output for the entire test set. We use the mini-batch of 100
patients when assessing both training and test times. RNN takes longer than RNN+↵M because of its
two-layer structure, whereas RNN+↵M uses a single layer RNN. The models that use two RNNs
(RNN, RNN+↵R, RETAIN)2 take similar time to train for one epoch. However, each model required
a different number of epochs to converge. RNN typically takes approximately 10 epochs, RNN+↵M

and RNN+↵R 15 epochs and RETAIN 30 epochs. Lastly, training the attention models (RNN+↵M ,
RNN+↵R and RETAIN) for DPM would take considerably longer than L2D, because DPM modeling
generates context vectors at each time step. RNN, on the other hand, does not require additional
computation other than embedding the visit to its hidden layer to predict target labels at each time
step. Therefore, in DPM, the training time of the attention models will increase linearly in relation to
the length of the input sequence.

4.3 Model Interpretation for Heart Failure Prediction
We evaluated the interpretability of RETAIN in the HF prediction task by choosing a HF patient from
the test set and calculating the contribution of the variables (medical codes in this case) to diagnostic
prediction. The patient suffered from skin problems, skin disorder (SD), benign neoplasm (BN),
excision of skin lesion (ESL), for some time before showing symptoms of HF, cardiac dysrhythmia
(CD), heart valve disease (HVD) and coronary atherosclerosis (CA), and then a diagnosis of HF
(Figure 3). We can see that skin-related codes from the earlier visits made little contribution to HF
prediction as expected. RETAIN properly puts much attention to the HF-related codes that occurred in
recent visits.

To confirm RETAIN’s ability to exploit the sequence information of the EHR data, we reverse the visit
sequence of Figure 3a and feed it to RETAIN. Figure 3b shows the contribution of the medical codes
of the reversed visit record. HF-related codes in the past are still making positive contributions, but
not as much as they did in Figure 3a. Figure 3b also emphasizes RETAIN’s superiority to interpretable,
but stationary models such as logistic regression. Stationary models often aggregate past information
and remove the temporality from the input data, which can mistakenly lead to the same risk prediction
for Figure 3a and 3b. RETAIN, however, can correctly digest the sequence information and calculates
the HF risk score of 9.0%, which is significantly lower than that of Figure 3a.

Figure 3c shows how the contributions of codes change when selected medication data are used in
the model. We added two medications from day 219: antiarrhythmics (AA) and anticoagulants (AC),
both of which are used to treat cardiac dysrhythmia (CD). The two medications make a negative
contributions, especially towards the end of the record. The medications decreased the positive
contributions of heart valve disease and cardiac dysrhythmia in the last visit. Indeed, the HF risk

2The RNN baseline uses two layers of RNN, RNN+↵R uses one for visit embedding and one for generating
↵, RETAIN uses each for generating ↵ and �
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Figure 3: (a) Temporal visualization of a patient’s visit records where the contribution of variables for
diagnosis of heart failure (HF) is summarized along the x-axis (i.e. time) with the y-axis indicating
the magnitude of visit and code specific contributions to HF diagnosis. (b) We reverse the order of
the visit sequence to see if RETAIN can properly take into account the modified sequence information.
(c) Medication codes are added to the visit record to see how it changes the behavior of RETAIN.

prediction (0.2165) of Figure 3c is lower than that of Figure 3a (0.2474). This suggests that taking
proper medications can help the patient in reducing their HF risk.

5 Conclusion

Our approach to modeling event sequences as predictors of HF diagnosis suggest that complex
models can offer both superior predictive accuracy and more precise interpretability. Given the power
of RNNs for analyzing sequential data, we proposed RETAIN, which preserves RNN’s predictive
power while allowing a higher degree of interpretation. The key idea of RETAIN is to improve
the prediction accuracy through a sophisticated attention generation process, while keeping the
representation learning part simple for interpretation, making the entire algorithm accurate and
interpretable. RETAIN trains two RNN in a reverse time order to efficiently generate the appropriate
attention variables. For future work, we plan to develop an interactive visualization system for
RETAIN and evaluating RETAIN in other healthcare applications.
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