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Abstract

Even in state-spaces of modest size, planning is plagued by the “curse of dimen-
sionality”. This problem is particularly acute in human and animal cognition given
the limited capacity of working memory, and the time pressures under which plan-
ning often occurs in the natural environment. Hierarchically organized modular
representations have long been suggested to underlie the capacity of biological
systems1,2 to efficiently and flexibly plan in complex environments. However, the
principles underlying efficient modularization remain obscure, making it difficult to
identify its behavioral and neural signatures. Here, we develop a normative theory
of efficient state-space representations which partitions an environment into distinct
modules by minimizing the average (information theoretic) description length of
planning within the environment, thereby optimally trading off the complexity of
planning across and within modules. We show that such optimal representations
provide a unifying account for a diverse range of hitherto unrelated phenomena at
multiple levels of behavior and neural representation.

1 Introduction

In a large and complex environment, such as a city, we often need to be able to flexibly plan so that we
can reach a wide variety of goal locations from different start locations. How might this problem be
solved efficiently? Model-free decision making strategies3 would either require relearning a policy,
determining which actions (e.g. turn right or left) should be chosen in which state (e.g. locations in
the city), each time a new start or goal location is given – a very inefficient use of experience resulting
in prohibitively slow learning (but see Ref. 4). Alternatively, the state-space representation used for
determining the policy can be augmented with extra dimensions representing the current goal, such
that effectively multiple policies can be maintained5, or a large “look-up table” of action sequences
connecting any pair of start and goal locations can be represented – again leading to inefficient use of
experience and potentially excessive representational capacity requirements.

In contrast, model-based decision-making strategies rely on the ability to simulate future trajectories
in the state space and use this in order to flexibly plan in a goal-dependent manner. While such
strategies are data- and (long term) memory-efficient, they are computationally expensive, especially
in state-spaces for which the corresponding decision tree has a large branching factor and depth6.
Endowing state-space representations with a hierarchical structure is an attractive approach to
reducing the computational cost of model-based planning7–11 and has long been suggested to be
a cornerstone of human cognition1. Indeed, recent experiments in human decision-making have
gleaned evidence for the use and flexible combination of “decision fragments”12 while neuroimaging
work has identified hierarchical action-value reinforcement learning in humans13 and indicated that
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dorsolateral prefrontal cortex is involved in the passive clustering of sequentially presented stimuli
when transition probabilities obey a “community” structure14.

Despite such a strong theoretical rationale and empirical evidence for the existence of hierarchical
state-space representations, the computational principles underpinning their formation and utilization
remain obscure. In particular, previous approaches proposed algorithms in which the optimal state-
space decomposition was computed based on the optimal solution in the original (non-hierarchical)
representation15,16. Thus, the resulting state-space partition was designed for a specific (optimal)
environment solution rather than the dynamics of the planning algorithm itself, and also required a
priori knowledge of the optimal solution to the planning problem (which may be difficult to obtain in
general and renders the resulting hierarchy obsolete). Here, we compute a hierarchical modularization
optimized for planning directly from the transition structure of the environment, without assuming
any a priori knowledge of optimal behavior. Our approach is based on minimizing the average
information theoretic description length of planning trajectories in an environment, thus explicitly
optimizing representations for minimal working memory requirements. The resulting representation
are hierarchically modular, such that planning can first operate at a global level across modules
acquiring a high-level “rough picture” of the trajectory to the goal and, subsequently, locally within
each module to “fill in the details”.

The structure of the paper is as follows. We first describe the mathematical framework for optimizing
modular state-space representations (Section 2), and also develop an efficient coding-based approach
to neural representations of modularised state spaces (Section 2.6). We then test some of the key
predictions of the theory in human behavioral and neural data (Section 3), and also describe how this
framework can explain several temporal and representational characteristics of “task-bracketing” and
motor chunking in rodent electrophysiology (Section 4). We end by discussing future extensions and
applications of the theory (Section 5).

2 Theory

2.1 Basic definitions

In order to focus on situations which require flexible policy development based on dynamic goal
requirements, we primarily consider discrete “multiple-goal” Markov decision processes (MDPs).
Such an MDP, M := {S,A, T ,G}, is composed of a set of states S, a set of actions A (a subset
As of which is associated with each state s ∈ S), and transition function T which determines the
probability of transitioning to state sj upon executing action a in state si, p(sj |si, a) := T (si, a, sj).
A task (s, g) is defined by a start state s ∈ S and a goal state g ∈ G and the agent’s objective is to
identify a trajectory of via states v which gets the agent from s to g. We define a modularization1

M of the state-space S to be a set of Boolean matricesM := {Mi}i=1...m indicating the module
membership of all states s ∈ S. That is, for all s ∈ S, there exists i ∈ 1, . . . ,m such that
Mi(s) = 1, Mj(s) = 0 ∀j 6= i. We assume this to form a disjoint cover of the state-space
(overlapping modular architectures will be explored in future work). We will abuse notation by
using the expression s ∈M to indicate that a state s is a member of a module M . As our planning
algorithm P , we consider random search as a worst-case scenario although, in principle, our approach
applies to any algorithm such as dynamic programming or Q-learning3 and we expect the optimal
modularization to depend on the specific algorithm utilized.

We describe and analyze planning as a Markov process. For planning, the underlying state-space is
the same as that of the MDP and the transition matrix T is a marginalization over a planning policy
πplan (which, here, we assume is the random policy πrand(a|si) := 1

|Asi
| )

Tij =
∑

a

πplan(a|si) T (si, a, sj) (1)

Given a modularizationM, planning at the global level is a Markov process MG corresponding to
a “low-resolution” representation of planning in the underlying MDP where each state corresponds

1This is an example of a “propositional representation” 17,18 and is analogous to state aggregation or “clus-
tering” 19,20 in reinforcement learning which is typically accomplished via heuristic bottleneck discovery algo-
rithms 21. Our method is novel in that it does not require the optimal policy as an input and is founded on a
normative principle.
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to a “local” module Mi and the transition structure TG is induced from T via marginalization and
normalization22 over the internal states of the local modules Mi.

2.2 Description length of planning

We use an information-theoretic framework23,24 to define a measure, the (expected) description
length (DL) of planning, which can be used to quantify the complexity of planning P in the induced
global L(P|MG) and local modules L(P|Mi). We will compute the DL of planning, L(P), in a
non-modularized setting and outline the extension to modularized planning DL L(P|M) (elaborating
further in the supplementary material). Given a task (s, g) in an MDP, a solution v(n) to this task
is an n-state trajectory such that v(n)

1 = s and v
(n)
n = g. The description length (DL) of this

trajectory is L(v(n)) := − log pplan(v
(n)). A task may admit many solutions corresponding to

different trajectories over the state-space thus we define the DL of the task (s, g) to be the expectation
over all trajectories which solve this task, namely

L(s, g) := Ev,n

[
L(v(n))

]
= −

∞∑

n=1

∑

v(n)

p(v(n)|s, g) log p(v(n)|s, g) (2)

This is the (s, g)-th entry of the trajectory entropy matrix H of M. Remarkably, this can be expressed
in closed form25:

[H]sg =
∑

v 6=g

[(I − Tg)−1]svHv (3)

where T is the transition matrix of the planning Markov chain (Eq. 1), Tg is a sub-matrix correspond-
ing to the elimination of the g-th column and row, and Hv is the local entropy Hv := H(Tv·) at state
v. Finally, we define the description length L(P) of the planning process P itself over all tasks (s, g)

L(P) := Es,g[L(s, g)] =
∑

(s,g)

Ps Pg L(s, g) (4)

where Ps and Pg are priors of the start and goal states respectively which we assume to be factorizable
P(s,g) = Ps Pg for clarity of exposition. In matrix notation, this can be expressed asL(P) = Ps HPT

g
where Ps is a row-vector of start state probabilities and Pg is a row-vector of goal state probabilities.

The planning DL, L(P|M), of a nontrivial modularization of an MDP requires (1) the computation
of the DL of the global L(P|MG) and the local planning processes L(P|Mi) for global MG and
local Mi modular structures respectively, and (2) the weighting of these quantities by the correct
priors. See supplementary material for further details.

2.3 Minimum modularized description length of planning

Based on a modularization, planning can be first performed at the global level across modules, and
then subsequently locally within the subset of modules identified by the global planning process
(Fig. 1). Given a task (s, g) where s represents the start state and g represents the goal state, global
search would involve finding a trajectory in MG from the induced initial module (the unique Ms such
that Ms(s) = 1) to the goal module (Mg(g) = 1). The result of this search will be a global directive
across modules Ms → · · · → Mg. Subsequently, local planning sub-tasks are solved within each
module in order to “fill in the details”. For each module transition Mi →Mj in MG, a local search
in Mi is accomplished by planning from an entrance state from the previous module, and planning
until an exit state for module Mj is entered. This algorithm is illustrated in Figure 1.

By minimizing the sum of the global L(P|MG) and local DLs L(P|Mi), we establish the optimal
modularizationM∗ of a state-space for planning:

M∗ := argmin
M

[L(P|M) + L(M)] , where L(P|M) := L(P|MG) +
∑

i

L(P|Mi) (5)

Note that this formulation explicitly trades-off the complexity (measured as DL) of planning at the
global level, L(P|MG), i.e. across modules, and at the local level, L(P|Mi), i.e. within individual
modules (Fig. 1C-D). In principle, the representational cost of the modularization itself L(M) is also
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part of the trade-off, but we do not consider it further here for two reasons. First, in the state-spaces
considered in this paper, it is dwarfed by the the complexities of planning, L(M) � L(P|M)
(see the supplementary material for the mathematical characterization of L(M)). Second, it taxes
long-term rather than short-term memory, which is at a premium when planning26,27. Importantly,
although computing the DL of a modularization seems to pose significant computational challenges
by requiring the enumeration of a large number of potential trajectories in the environment (across
or within modules), in the supplementary material we show that it can be computed in a relatively
straightforward manner (the only nontrivial operation being a matrix inversion) using the theory of
finite Markov chains22.

2.4 Planning compression

The planning DL L(s, g) for a specific task (s, g) describes the expected difficulty in finding an
intervening trajectory v for a task (s, g). For example, in a binary coding scheme where we assign
binary sequences to each state, the expected length of string of random 0s and 1s corresponding to a
trajectory will be shorter in a modularized compared to a non-modularized representation. Thus, we
can examine the relative benefit of an optimal modularization, in the Shannon limit, by computing
the ratio of trajectory description lengths in modularized and non-modularized representations of
a task or environment28. In line with spatial cognition terminology29, we refer to this ratio as the
compression factor of the trajectory.

Soho Modularization

L(P|M)

X

i

L(P|Mi)

L(P|MG)

P
la

nn
in

g 
de

sc
rip

tio
n 

le
ng

th
 (n

at
s)

Number of modules

G

SS

Flat Planning
Global Local

L(P)
X

i

L(P|Mi)

G

Fig. 1 “Explanation”

M1 M2 M3Global

Local

A B

Time

· · ·s1 g1 · · ·s2 g2 · · ·s3 g3

Planning!
Entropy L(P|M1) L(P|M2) L(P|M3)

E F

Modularized Planning

S/G

S

G

S

G

S

G

L(P|MG)

G
London’s Soho

50m

N

C D

L(P|MG)

0 1 2 3

Entropic centrality (bits)×104

1

2

3

4

5

6

D
e

g
re

e
 c

e
n

tr
a

lit
y 

(#
co

n
n

e
ct

e
d

 s
ta

te
s)

4

D
eg

re
e 

ce
nt

ra
lit

y

Entropic centrality (knats)
0 1 2 3

1

3

2

5

6

0.5 1 1.5 2 2.5 3

Compression Factor

0

0.05

0.1

0.15

0.2

0.25

P
ro

ba
bi

lit
y

Modularized Soho Trajectories.25

Fr
ac

tio
n

Soho trajectory compression factor

0

.05

.1

.15

.2

.5 1 1.5 2 2.5 3

E
C

 E
uc

lid
ea

n 
D

is
ta

nc
e 

(k
na

ts
)

W
ith

in!

Mod
ule

s
Acro

ss
!

Mod
ule

s
0

-1 0 1 2

Within- vs Across-Module

-50

0

50

100

R
a
n
k 

S
u
m

 S
co

re
 (

la
rg

e
r 

=
>

 m
o
re

 s
im

ila
r)

-1 0 1 2

Within- vs Across-Module

0

2000

4000

6000

E
C

 E
u
cl

id
e
a
n
 D

is
ta

n
ce

Normalized Euclidean dist between EC ordered by module

0

0.5

1

Modules

2

4

6

-1 0 1 2

Within- vs Across-Module

-50

0

50

R
a

n
k 

S
u

m
 S

co
re

 (
la

rg
e

r 
=

>
 m

o
re

 s
im

ila
r)

-1 0 1 2

Within- vs Across-Module

0

2000

4000

6000

A
b

so
lu

te
 d

iff
e

re
n

ce
 in

 E
C

Normalized Euclidean dist between EC ordered by module

0

0.5

1

Modules

Optimizing Modularization

Figure 1. Modularized planning. A. Schematic exhibiting how planning, which could be highly
complex using a flat state space representation (left), can be reformulated into a hierarchical planning
process via a modularization (center and right). Boxes (circles or squares) show states, lines are
transitions (gray: potential transitions, black: transitions considered in current plan). Once the “global
directive” has been established by searching in a low-resolution representation of the environment
(center), the agent can then proceed to “fill in the details” by solving a series of local planning
sub-tasks (right). Formulae along the bottom show the DL of the corresponding planning processes.
B. Given a modularization, a serial hierarchical planning process unfolds in time beginning with
a global search task followed by local sub-tasks. As each global/local planning task is initiated in
series, there is a phasic increase in processing which scales with planning difficulty in the upcoming
module as quantified by the local DL, L(P|Mi). C. Map of London’s Soho state-space, streets (lines,
with colors coding degree centrality) correspond to states (courtesy of Hugo Spiers). D. Minimum
expected planning DL of London’s Soho as a function of the number of modules (minimizing over
all modularizations with the given number of modules). Red: global, blue: local, black: total DL.
E. Histogram of compression factors of 200 simulated trajectories from randomly chosen start to
goal locations in London’s Soho. F. Absolute entropic centrality (EC) differences within and across
connected modules in the optimal modularization of the Soho state-space. G. Scatter plot of degree
and entropic centralities of all states in the Soho state-space.
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