
Bayesian Intermittent Demand Forecasting for Large
Inventories

Matthias Seeger, David Salinas, Valentin Flunkert
Amazon Development Center Germany

Krausenstrasse 38
10115 Berlin

matthis@amazon.de, dsalina@amazon.de, flunkert@amazon.de

Abstract

We present a scalable and robust Bayesian method for demand forecasting in the
context of a large e-commerce platform, paying special attention to intermittent
and bursty target statistics. Inference is approximated by the Newton-Raphson
algorithm, reduced to linear-time Kalman smoothing, which allows us to operate on
several orders of magnitude larger problems than previous related work. In a study
on large real-world sales datasets, our method outperforms competing approaches
on fast and medium moving items.

1 Introduction

Demand forecasting plays a central role in supply chain management, driving automated ordering,
in-stock management, and facilities planning. Classical forecasting methods, such as exponential
smoothing [10] or ARIMA models [5], produce Gaussian predictive distributions. While sufficient
for inventories of several thousand fast-selling items, Gaussian assumptions are grossly violated
for the extremely large catalogues maintained by e-commerce platforms. There, demand is highly
intermittent and bursty: long runs of zeros, with islands of high counts. Decision making requires
quantiles of predictive distributions [14], whose accuracy suffer under erroneous assumptions.

In this work, we detail a novel methodology for intermittent demand forecasting which operates in
the industrial environment of a very large e-commerce platform. Implemented in Apache Spark
[16], our method is used to process many hundreds of thousands of items and several hundreds of
millions of item-days. Key requirements are automated parameter learning (no expert interventions),
scalability and a high degree of operational robustness. Our system produces forecasts both for short
(one to three weeks) and longer lead times (up to several months), the latter require feature maps
depending on holidays, sales days, promotions, and price changes. Previous work on intermittent
demand forecasting in Statistics is surveyed in [15]: none of these address longer lead times. On a
modelling level, our proposal is related to [6], yet several novelties are essential for operating at the
industrial scale we target here. This paper makes the following contributions:

• A combination of generalized linear models and time series smoothing. The former enables
medium and longer term forecasts, the latter provides temporal continuity and reasonable
distributions over time. Compared to [6], we provide empirical evidence for the usefulness
of this combination.

• A novel algorithm for maximum likelihood parameter learning in state space models with
non-Gaussian likelihood, using approximate Bayesian inference. While there is substantial
related prior work, our proposal stands out in robustness and scalability. We show how
approximate inference is solved by the Newton-Raphson algorithm, fully reduced to Kalman
smoothing once per iteration. This reduction scales linearly (a vanilla implementation

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

would scale cubically). While previously used in Statistics [7, Sect. 10.7], this reduction
is not widely known in Machine Learning. If L-BFGS is used instead (as proposed in [6]),
approximate inference fails in our real-world use cases.

• A multi-stage likelihood, taylored to intermittent and bursty demand data (extension of
[15]), and a novel transfer function for Poisson likelihood, which robustifies the Laplace
approximation for bursty data. We demonstrate that our approach would not work without
these novelties.

The structure of this paper is as follows. In Section 2, we introduce intermittent demand likelihood
function as well as a generalized linear model baseline. Our novel latent state forecasting methodology
is detailed in Section 3. We relate our approach to prior work in Section 4. In Section 5, we evaluate
our methods both on publicly available data and on a large dataset of real-world demand in the context
of e-commerce, comparing against state of the art intermittent forecasting methods.

2 Generalized Linear Models

In this section, we introduce a likelihood function for intermittent demand data, along with a
generalized linear model as baseline. Denote demand by zit ∈ N (i for item, t for day). Our goal is
to predict distributions of zit aggregates in the future. We do this by fitting a probabilistic model to
maximize the likelihood of training demand data, then drawing sample paths from the fitted model,
which represent forecast distributions. In the sequel, we fix an item i and write zt instead of zit.

A model is defined by a likelihood P (zt|yt) and a latent function yt. An example is the Poisson:

Ppoi(z|y) =
1

z!
λ(y)ze−λ(y), z ∈ N, (1)

where the rate λ(y) depends on y through a transfer function. Demand data over large inventories is
both intermittent (many zt = 0) and bursty (occasional large zt), and is not well represented by a
Poisson. A better choice is the multi-stage likelihood, generalizing a proposal in [15]. This likelihood
decomposes into K = 3 stages, each with its latent function y(k). In stage k = 0, we emit z = 0 with
probability1 σ(y(0)). Otherwise, we transfer to stage k = 1, where z = 1 is emitted with probability
σ(y(1)). Finally, if z ≥ 2, then stage k = 2 draws z − 2 from the Poisson (1) with rate λ(y(2)).

If the latent function yt (or functions yt(k)) is linear, yt = x>t w , we have a generalized linear model
(GLM) [11]. Features in xt include kernels anchored at holidays (Christmas, Halloween), seasonality
indicators (DayOfWeek, MonthOfYear), promotion or price change indicators. The weights w are
learned by maximizing the training data likelihood. For the multi-stage likelihood, this amounts to
separate instances of binary classification at stages 0, 1, and Poisson regression at stage 2. Generalized
linear forecasters work reasonably well, but have some important drawbacks. They lack temporal
continuity: for short term predictions, even simple smoothers can outperform a tuned GLM. More
important, a GLM predicts overly narrow forecast distributions, whose widths do not grow over time,
and it neglects temporal correlations. Both drawbacks are alleviated in Gaussian linear time series
models, such as exponential smoothing (ES) [10]. A major challenge is to combine this technology
with general likelihood functions (Poisson, multi-stage) to enable intermittent demand forecasting.

3 Latent State Forecasting

In this section, we develop latent state forecasting for intermittent demand, combining GLMs, general
likelihoods, and exponential smoothing time series models. We begin with a single likelihood
P (zt|yt), for example the Poisson (1), then consider a multi-stage extension. The latent process is

yt = a>t lt−1 + bt, bt = w>xt, lt = F lt−1 + gtεt, εt ∼ N(0, 1). (2)

Here, bt is the GLM deterministic linear function, lt is a latent state. This innovation state space
model (ISSM) [10] is defined by at, gt and F , as well as the prior l0 ∼ P (l0). Note that ISSMs are
characterized by a single Gaussian innovation variable εt per time step. In our experiments here, we

1 Here, σ(u) := (1 + e−u)−1 is the logistic sigmoid.

2

employ a simple2 instance:

yt = lt−1 + bt, lt = lt−1 + αεt, l0 ∼ N(µ0, σ
2
0),

meaning that F = [1], at = [1], gt = [α], and the latent state contains a level component only. The
free parameters are w (weights), α > 0, and µ0, σ0 > 0 of P (l0), collected in the vector θ .

3.1 Training. Prediction. Multiple Stages

We would like to learn θ by maximizing the likelihood of data [zt]t=1,...,T . Compared to the
GLM case, this is harder to do, since latent (unobserved) variables s = [ε1, . . . , εT−1, l0

>]>

have to be integrated out. If our likelihood P (zt|yt) was Gaussian, this marginalization could be
computed analytically via Kalman smoothing [10]. With a non-Gaussian likelihood, the problem is
analytically intractable, yet is amenable to the Laplace approximation [4, Sect. 4.4]. The exact log
likelihood is logP (z |θ) = log

∫
P (z , s|θ) ds = log

∫ ∏
t P (zt|yt)P (s) ds, where y = y(s) is

the affine mapping given by (2). We proceed in two steps. First, we find the mode of the posterior:
ŝ = argmax logP (z , s|θ), the inner optimization problem. Second, we replace − logP (z , s|θ)
by its quadratic Taylor approximation f(s;θ) at the mode. The criterion to replace the negative
log likelihood is ψ(θ) := − log

∫
e−f(s;θ) ds. More precisely, denote φt(yt) := − logP (zt|yt),

and let ŷ = y(ŝ), where ŝ is the posterior mode. The log-concavity of the likelihood implies
that φt(yt) is convex, and φ′′t (yt) > 0. The quadratic Taylor approximation to φt(yt) at ŷt is
φ̃t(yt) := − logN(z̃t|yt, σ2

t), where σ2
t = 1/φ′′t (ŷt) and z̃t = ŷt − σ2

t φ
′
t(ŷt). Now, Laplace’s

approximation to − logP (z |θ) can be written as

ψ(θ) = − log

∫ ∏
t

N(z̃t|yt, σ2
t)P (s) ds +

∑
t

(
φt(ŷt)− φ̃t(ŷt)

)
, y = y(s;θ). (3)

For log-concave3 P (zt|yt), the inner optimization is a convex problem. We use the Newton-Raphson
algorithm to solve it. This algorithm iterates between fitting the current criterion by its local second
order approximation and minimizing the quadratic surrogate. For the former step, we compute yt
values by a forward pass (2), then replace the potentials P (zt|yt) by N(z̃t|yt, σ2

t), where the values
z̃t, σ2

t are determined by the second order fit (as above, but ŷt → yt). The latter step amounts to
computing the posterior mean (equal to the mode) E[s] of the resulting Gaussian-linear model. This
inference problem is solved by Kalman smoothing.4

Not only finding the mode ŝ, but also the computation of∇θψ, is fully reduced to Kalman smoothing.
This point is crucial. We can find ŝ by the most effective optimization algorithm there is. In
general, each Newton step requires the O(T 3) inversion of a Hessian matrix. We reduce it to Kalman
smoothing, a robust algorithm with O(T) scaling. As shown in Section 4, Newton-Raphson is
essential here: other commonly used optimizers fail to find ŝ in a reasonable time.

Prediction samples are obtained as follows. Denote observed demand by [z1, z2, . . . , zT], unobserved
demand in the prediction range by [zT+1, zT+2, . . .]. We run Newton-Raphson one more time to
obtain the Gaussian approximation to the posterior P (lT |z1:T) over the final state. For each sample
path [zT+t], we draw lT ∼ P (lT |z1:T), εT+t ∼ N(0, 1), compute [yT+t] by a forward pass, and
zT+t ∼ P (zT+t|yT+t). Drawing prediction samples is not more expensive than from a GLM.

Finally, we generalize latent state forecasting to the multi-stage likelihood. As for the GLM, we learn
parameters θ(k) separately for each stage k. Stages k = 0, 1 are binary classification, while stage
k = 2 is count regression. Say that a day t is active at stage k if zt ≥ k. Recall that with GLMs, we
simply drop non-active days. Here, we use ISSMs for [y

(k)
t] on the full range t = 1, . . . , T , but all

non-active y(k)t are considered unobserved: no likelihood potential is associated with t. Both Kalman
smoothing and mode finding (Laplace approximation) are adapted to missing observations, which
presents no difficulties (see also Section 5.1).

2 More advanced variants include damping, linear trend, and seasonality factors [10].
3 Unless otherwise said, all likelihoods in this paper are log-concave.
4 We use a numerically robust implementation of Kalman smoothing, detailed in [10, Sect. 12].

3

3.2 Some Details

In this section, we sketch technical details, most of which are novel contributions. As demonstrated
in our experiments, these details are essential for the whole approach to work robustly at the intended
scale on our difficult real-world data. Full details are given in a supplemental report.

We use L-BFGS for the outer optimization of ψ(θ), encoding the constrained parameters: α =
αm + (αM − αm)σ(θ1); 0 < αm < αM ; σ0 = log(1 + eθ2) > 0. We add a quadratic regularizer∑
j(ρj/2)(θj − θ̄j)2 to the criterion, where ρj , θ̄j are shared across all items. Finally, recall that

with the multi-stage likelihood, day t is unobserved at stage k > 1 if zt < k. If for some item, there
are less than 7 observed days in a stage, we skip training and fall back to fixed parameters θ̄ .

Every single evaluation of ψ(θ) requires finding the posterior mode ŝ. This high-dimensional inner
optimization has to converge robustly in few iterations: ŝ = argminF (s;θ) := − logP (z |s) −
logP (s) =

∑
t φt(yt) − logP (s). The use of Newton-Raphson and its reduction to linear-time

Kalman smoothing was noted above. The algorithm is extended by a line search procedure as well as
a heuristic to pick a starting point s0 (see supplemental report).

We have to compute the gradient ∇θψ(θ), where the criterion is given by (3). The main difficulty
here are indirect dependencies: ψ(θ, ŷ , ŝ), where ŷ = y(ŝ;θ), ŝ = ŝ(θ). Since ŝ is computed by
an iterative algorithm, commonly used automated differentiation tools do not sensibly apply here.
Maybe the most difficult indirect term is (∂ŝψ)>(∂ŝ/∂θj), where θj ∈ θ . First, ŝ is defined by
∂ŝF = 0. Taking the derivative w.r.t. θj on both sides, we obtain (∂ŝ/∂θj) = −(∂ŝ,ŝF)−1∂ŝ,θjF ,
so we are looking at −(∂ŝ,θjF)>(∂ŝ,ŝF)−1(∂ŝψ). It is of course out of the question to compute and
invert ∂ŝ,ŝF . But (∂ŝ,ŝF)−1(∂ŝψ) corresponds to the posterior mean for an ISSM with Gaussian
likelihood, which depends on ∂ŝψ. This means that the indirect gradient part costs one more run
of Kalman smoothing, independent of the number of parameters θj . Note that the same reasoning
underlies our reduction of Newton-Raphson to Kalman smoothing.

A final novel contribution is essential for making the Laplace approximation work on real-world bursty
demand data. Recall the transfer function λ(y) for the Poisson likelihood (1) at the highest stage
k = 2. As shown in Section 4, the exponential choice λ = ey fails for all but short term forecasts.
With a GLM, the logistic transfer λ(y) = g(y) works well, where g(u) := log(1 + eu). It behaves
like ey for y < 0, but grows linearly for positive y. However, it exhibits grave problems for latent
state forecasting. Denote φ(y) := − logP (z|y), where P (z|y) is the Poisson with logistic transfer.
Recall Laplace’s approximation from Section 3.1: φ(·) is fit by a quadratic φ̃(·) = (· − z̃)/(2σ2),
where σ2 = 1/φ′′(y), z̃ = y − σ2φ′(y). For large y and z = 0, these two terms scale as ey, while
for z > 0 they grow polynomially. In real-world data, we regularly exhibit sizable counts (say, a
few zt > 25, driving up yt), followed by a single zt = 0. At this point, huge values (z̃t, σ

2
t) arise,

causing cancellation errors in ψ(θ), and the outer optimization terminates prematurely.

The root cause for these issues lies with the transfer function: g(y) ≈ y for large y, its curvature
behaves as e−y. Our remedy is to propose the novel twice logistic transfer function: λ(y) =
g(y(1 + κg(y)), where κ > 0. If φκ(y) = − logP (z|y) with the new transfer function, then φκ(y)
behaves similar to φ(y) for small or negative y, but crucially (φκ)′′(y) ≈ 2κ for large y and any
z ∈ N. This means that Laplace approximation terms are O(1/κ). Setting κ = 0.01 resolves all
problems described above. Importantly, the resulting Poisson likelihood is log-concave for any
κ ≥ 0. We conjecture that similar problems may arise with other “local” variational or expectation
propagation inference approximations as well. The twice logistic transfer function should therefore
be of wider applicability.

4 Related Work

Our work has precursors both in Statistics and Machine Learning. Maximum likelihood learning for
exponential smoothing models is developed in [10]. These methods are limited to Gaussian likelihood,
approximate Bayesian inference is not used. Starting from Croston’s method [10, Sect. 16.2], there
is a sizable literature on intermittent demand forecasting, as reviewed in [15]. The best-performing
method in [15] uses negative binomial likelihood and a damped dynamic, parameters are learned
by maximum likelihood. There is no latent (random) state, and neither non-Gaussian inference nor
Kalman smoothing are required. It does not allow for a combination with GLMs.

4

We employ approximate Bayesian inference in a linear dynamical system, for which there is a lot
of prior work in Machine Learning [3, 1, 2]. While Laplace’s technique is the most frequently used
deterministic approximation in Statistics, both in publications and in automated inference systems
[13], other techniques such as expectation propagation are applicable to models of interest here
[12, 8]. The robustness and predictable running time of Laplace’s approximation are key in our
application, where inference is driving parameter learning, running in parallel over hundreds of
thousands of items. Expectation propagation is not guaranteed to converge, and Markov chain Monte
Carlo methods even lack automated convergence tests.

The work most closely related to ours is [6]. They target intermittent demand forecasting, using a
Laplace approximation for maximum likelihood learning, allow for a combination with GLMs, and
go beyond our work transferring information between items by way of a hierarchical prior distribution.
Their work is evaluated on small datasets and short term scenarios only. In contrast, our system runs
robustly on many hundreds of thousands of items and many millions of item-days, a three orders
of magnitude larger scale than what they report. They do not explore the value of a feature-based
deterministic part, which on our real-world data is essential for medium term forecasts. We find that a
number of choices in [6] are limiting when it comes to robustness and scalability. First, they choose a
likelihood which is not log-concave for two reasons: they use a negative binomial distribution instead
of a Poisson, and they use zero-inflation instead of a multi-stage setup.5 This means their inner
optimization problem is non-convex, jeopardizing robustness and efficiency of the nested learning
process. Moreover, in our multi-stage setup, the conditional probability of zt = 0 versus zt > 0 is
represented exactly, while zero-inflation caters for a time-independent zero probability only.

103 104 105

time [ms]

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

106

gr
ad

ie
nt

no
rm

newton
lbfgs

Figure 1: Comparison Newton-Raphson vs. L-
BFGS for inner optimization. Sampled at first
evaluation of ψ(θ). Shown are median (p10, p90)
over ca. 1500 items. L-BFGS fails to converge to
decent accuracy.

Next, they use an exponential transfer function
λ = ey for the negative binomial rate, while
we propose the novel twice logistic function
(Section 3.2). Experiments with the exponen-
tial choice on our data resulted in total failure,
at least beyond short term forecasts. Its huge
curvature for large y results in extremely large
and instable predictions around holidays. In fact,
the exponential function causes rapid growth of
predictions even without a linear function ex-
tension, unless the random process is strongly
damped. Finally, they use a standard L-BFGS
solver for their inner problem, evaluating the cri-
terion using additional sparse matrix software.
In contrast, we enable Newton-Raphson by re-
ducing it to Kalman smoothing. In Figure 1,
we evaluate the usefulness of L-BFGS for mode
finding in our setup.6 L-BFGS clearly fails to
attain decent accuracy in any reasonable amount
of time, while Newton-Raphson converges reli-
ably. Such inner reliability is key to reaching our goal of fully automated learning in an industrial
system. In conclusion, while the lack of public code for [6] precludes a direct comparison, their ap-
proach, while partly more advanced, should be limited to smaller problems, shorter forecast horizons,
and would be hard to run in an industrial setting.

5 Experiments

In this section, we present experimental results, comparing variants of our approach to related work.

5.1 Out of Stock Treatment

With a large and growing inventory, a fraction of items is out of stock at any given time, meaning
that order fulfillments are delayed or do not happen at all. When out of stock, an item cannot be sold

5 Zero-inflation, p0I{zt=0} + (1− p0)P ′(zt|yt), destroys log-concavity for zt = 0.
6 The inner problem is convex, its criterion is efficiently implemented (no dependence on foreign code). The

situation in [6] is likely more difficult.

5

(zt = 0), yet may still elicit considerable customer demand. The probabilistic nature of latent state
forecasting renders it easy to use out of stock information. If an item is not in stock at day t, the data
zt = 0 is explained away, and the corresponding likelihood term should be dropped. As noted in
Section 3.1, this presents no difficulty in our framework.

D
ec

20
13

M
ar

20
14

Ju
n

20
14

S
ep

20
14

D
ec

20
14

M
ar

20
15

Ju
n

20
15

S
ep

20
15

unobservedDays

D
ec

20
13

M
ar

20
14

Ju
n

20
14

S
ep

20
14

D
ec

20
14

M
ar

20
15

Ju
n

20
15

S
ep

20
15

unobservedDays

Figure 2: Demand forecast for an item which is partially out of stock. Each panel: Training range
left (green), prediction range right (red), true targets black. In color: Median, P10 to P90. Bottom:
Out of stock (≥ 80% of day) marked in red. Left: Out of stock signal ignored. Demand forecast
drops to zero, strong underbias in prediction range. Right: Out of stock regions treated as missing
observations. Demand becomes uncertain in out of stock region. No underbias in prediction range.

In Figure 2, we show demand forecasts for an item which is out of stock during certain periods in
the training range. It is obvious that ignoring the out of stock signal leads to systematic underbias
(since zt = 0 is interpreted as “no demand”). This underbias is corrected for by treating out of stock
regions as having unobserved targets. Note that an item may be partially out of stock during a day,
still creating some sales. In such cases, we could treat zt as unobserved, but lower-bounded by the
sales, and an expectation maximization extension may be applied. However, such situations are
comparatively rare in our data (compared to full-day out of stock). In the rest of this section, latent
state forecasting is taking out of stock information into account.

5.2 Comparative Study

We present experimental results obtained on a number of datasets, containing intermittent counts
time series. Parts contains monthly demand of spare parts at a US automobile company, is publicly
available, and was previously used in [10, 15, 6]. Further results are obtained on internal daily
e-commerce sales data. In either case, we subsampled the sets in a stratified manner from a larger
volume used in our production setting. EC-sub is medium size and contains fast and medium moving
items. EC-all is a large dataset (more than 500K items, 150M item-days), being the union of
EC-sub with items which are slower moving. Properties of these datasets are given in Figure 3, top
left. Demand is highly intermittent and bursty in all cases, as witnessed by a large CV 2 and a high
proportion of zt = 0: these properties are typical for supply chain data. Not only is EC-all much
larger than any public demand forecasting dataset we are aware of, our internal datasets consists of
longer series (up to 10×) and are more bursty than Parts.

The following methods are compared. ETS is exponential smoothing with Gaussian additive errors
and automatic model selection, a frequently used R package [9]. NegBin is our implementation of
the negative binomial damped dynamic variant of [15]. We consider two variants of our latent state
forecaster: LS-pure without features, and LS-feats with a feature vector xt (basic seasonality,
kernels at holidays, price changes, out of stock). Predictive distributions are represented by 100
samples over the prediction range (length 8 for Parts, length 365 for others). We employ quadratic
regularization for all methods except ETS (see Section 3.2). Hyperparameters consist of regularization
constants ρj and centers θ̄j (full details are given in the supplemental report). We tune7 such
parameters on random 10% of the data, evaluating test results on the remaining 90%. For LS-pure
and LS-feats, we use two sets of tuned hyperparameters on the largest set EC-all: one for the
EC-sub part, the other for the rest.

Our metrics quantify the forecast accuracy of certain quantiles of predictive distributions. They
are defined in terms of spans [L,L + S) in the prediction range, where L are lead times. In
general, we ignore days when items are out of stock (see Figure 3, top left, for in-stock ratios).

7 We found that careful hyperparameter tuning is important for obtaining good results, also for NegBin.
In contrast, regularization is not even mentioned in [15] (our implementation of NegBin includes the same
quadratic regularization as for our methods).

6

If πit = I{i in stock at t}, define Zi;(L,S) =
∑L+S−1
t=L πitzit. For ρ ∈ (0, 1), the predicted ρ-quantile

of Zi;(L,S) is denoted by Ẑρi;(L,S). These predictions are obtained from the sample paths by first
summing over the span, then estimating the quantile by way of sorting. The ρ-quantile loss8 is
defined as Lρ(z, ẑ) = 2(z− ẑ)(ρI{z>ẑ} − (1− ρ)I{z≤ẑ}). The P(ρ · 100) risk metric for [L,L+ S)

is defined as Rρ[I; (L, S)] = |I|−1
∑
i∈I Lρ(Zi;(L,S), Ẑ

ρ
i;(L,S)), where the left argument Zi;(L,S)

is computed from test targets.9 We focus on P50 risk (ρ = 0.5; mean absolute error) and P90 risk
(ρ = 0.9; the 0.9-quantile is often relevant for automated ordering).

Parts EC-sub EC-all

items 19874 39700 534884
Unit t month day day

Median CV 2 2.4 5.8 9.7
Freq. zt = 0 54% 46% 83%
In-stock ratio 100% 73% 71%

Avg. size series 33 329 293
item-days 656K 13M 157M

su
m

un
its

ETS

NegBin

LS-pure

LS-feats

true demand

(a)

Oct
14

Nov
14

Dec 14

Ja
n 15

Feb 15

Mar 15
Apr 15

May
15

Ju
n 15

Ju
l 1

5

Aug 15

P
50

ris
k

ETS

NegBin

LS-pure

LS-feats

(b)

Oct
14

Nov
14

Dec 14

Ja
n 15

Feb 15

Mar 15
Apr 15

May
15

Ju
n 15

Ju
l 1

5

Aug 15

P
90

ris
k

ETS

NegBin

LS-pure

LS-feats

(c)

Figure 3: Table: Dataset properties. CV 2 = Var[zt]/E[zt]
2 measures burstiness. (a): Sum of

weekly P50 point (median) forecast over a one-year prediction range for the different methods
(lines) as well as sum of true demand (shaded area), on dataset I = EC-sub. (b): Weekly P50 risk
R0.5[I; (7 · k, 7)], k = 0, 1, . . . , for same dataset. (c): Same as (b) for P90 risk.

We plot the P50 and P90 risk on dataset EC-sub, as well the sum of P50 point (median) forecast and
the true demand, in the three panels of Figure 3. All methods work well in the first week, but there
are considerable differences further out. Naturally, losses are highest during the Christmas peak sales
period. LS-feats strongly outperforms all others in this critical region (see Figure 3, top right), by
means of its features (holidays, seasonality). The Gaussian predictive distributions of ETS exhibit
growing errors over time. With the exception of the Christmas period, NegBin works rather well (in
particular in P50 risk), but is uniformly outperformed by both LS-pure, and LS-feats in particular.

A larger range of results are given in Table 1 (Parts, EC-sub) and Table 2 (EC-all), where numbers
are relative to NegBin. Note that the R code for ETS could not be run on the large EC-all. On
Parts, NegBin works best, yet LS-pure comes close (we did not use features on this dataset). On
EC-sub, LS-feats outperforms all others in all scenarios. The featureless NegBin and LS-pure are
comparable on this dataset. On the largest set EC-all, LS-feats generally outperforms the others,
but differences are smaller.

Finally, we report running times of parameter learning (outer optimization) for LS-feats on EC-sub.
L-BFGS was run with maxIters = 55, gradTol = 10−5. Our experimental cluster consists of
about 150 nodes, with Intel Xeon E5-2670 CPUs (4 cores) and 30GB RAM. Profiling was done
separately in each stage: k = 0 (P5 = 0.180s, P50 = 1.30s, P95 = 2.15s), k = 1 (P5 = 0.143s,
P50 = 1.11s, P95 = 1.79s), k = 2 (P5 = 0.138s, P50 = 1.29s, P95 = 3.25s). Here, we
quote median (P50), 5% and 95% percentiles (P5, P95). The largest time recorded was 10.4s. The
narrow spread of these numbers witnesses the robustness and predictability of the nested optimization
process, crucial properties in the context of production systems running on parallel compute clusters.

8 EZ [Lρ(Z, ẑ)] is minimized by the ρ-quantile. Also, L0.5(z, ẑ) = |z − ẑ|.
9 More precisely, we filter I before use in Rρ[I; (L, S)]: I′ = {i ∈ I |

∑L+S−1
t=L πit ≥ 0.8S}.

7

Parts EC-sub
P90 risk P50 risk P90 risk P50 risk

(L, S) (0, 2) dy(8) (0, 2) dy(8) (0, 56) (21, 84) wk(33) (0, 56) (21, 84) wk(33)

ETS 1.04 1.04 1.19 1.38 0.99 0.75 1.13 1.07 1.10 1.18
LS-pure 1.08 1.06 1.04 1.06 1.07 0.97 0.99 0.95 1.03 0.99
LS-feats – – – – 0.80 0.73 0.85 0.84 0.84 0.94
NegBin 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 1: Results for dataset Parts (left) and EC-sub (right). Metric values relative to NegBin
(each column). dy(8): Average of Rρ[I; (k, 1)], k = 0, . . . , 7. wk(33): Average of Rρ[I; (7 · k, 7)],
k = 0, . . . , 32.

P90 risk P50 risk
(L, S) (0, 56) (21, 84) wk(33) (0, 56) (21, 84) wk(33)

LS-pure 1.11 1.03 0.99 1.00 1.03 1.05
LS-feats 0.95 0.86 0.89 0.92 0.88 0.98
NegBin 1.00 1.00 1.00 1.00 1.00 1.00

Table 2: Results for dataset EC-all. Metric values relative to NegBin (each column). ETS could not
be run at this scale.

6 Conclusions. Future Work

In this paper, we developed a framework for maximum likelihood learning of probabilistic latent
state forecasting models, which can be seen as principled time series extensions of generalized linear
models. We pay special attention to the intermittent and bursty statistics of demand, characteristic for
the vast inventories maintained by large retailers or e-commerce platforms. We show how approximate
Bayesian inference techniques can be implemented in a robust and highly scalable way, so to enable
a forecasting system which runs safely on hundred of thousands of items and hundreds of millions of
item-days.

We can draw some conclusions from our comparative study on a range of real-world datasets. Our
proposed method strongly outperforms competitors on sales data from fast and medium moving
items. Besides good short term forecasts due to temporal smoothness and well-calibrated growth of
uncertainty, our use of a feature vector seems most decisive for medium term forecasts. On slow
moving items, simpler methods like NegBin [15] are competitive, even though they lack signal
models which could be learned from data.

We are investigating several directions for future work. Our current system uses time-independent
ISSMs, in particular gt = [α] means that the same amount of innovation variance is applied every day.
This assumption is violated by our data, where a lot more variation happens in the weeks leading up
to Christmas or before major holidays than during the rest of the year. To this end, we are exploring
learning two parameters: αh during high-variation periods, and αl for all remaining days. We also
plan to augment the state lt by seasonality10 factors [10, Sect. 14] (both at, gt depend on time then).

One of the most important future directions is to learn about and exploit dependencies between
the demand time series of different items. In fact, the strategy to learn and forecast each item
independently is not suitable for items with a short demand history, or for slow moving items. One
approach we pursue is to couple latent processes by a shared (global) linear or non-linear function.

Acknowledgements

We would like to thank Maren Mahsereci for determining the running time figures, and the Wupper
team for all the hard work without which this paper would not have happened.

10 Currently, periodic seasonality is dealt with by features in xt.

8

References
[1] D. Barber. Expectation correction for smoothing in switching linear Gaussian state space

models. Journal of Machine Learning Research, 7:2515–2540, 2006.

[2] D. Barber, T. Cemgil, and S. Chiappa. Bayesian Time Series Models. Cambridge University
Press, 1st edition, 2011.

[3] M. Beal. Variational Algorithms for Approximate Bayesian Inference. PhD thesis, Gatsby Unit,
UCL, 2003.

[4] C. Bishop. Pattern Recognition and Machine Learning. Springer, 1st edition, 2006.

[5] G. Box, G. Jenkins, and G. Reinsel. Time Series Analysis: Forecasting and Control. John Wiley
& Sons, 4th edition, 2013.

[6] N. Chapados. Effective Bayesian modeling of groups of related count time series. In E. Xing
and T. Jebara, editors, International Conference on Machine Learning 31, pages 1395–1403.
JMLR.org, 2014.

[7] J. Durbin and S. Koopman. Time Series Analysis by State Space Methods. Oxford Statistical
Sciences. Oxford University Press, 2nd edition, 2012.

[8] Tom Heskes and Onno Zoeter. Expectation propagation for approximate inference in dy-
namic Bayesian networks. In A. Darwiche and N. Friedman, editors, Uncertainty in Artificial
Intelligence 18. Morgan Kaufmann, 2002.

[9] R. Hyndman and Y. Khandakar. Automatic time series forecasting: the forecast package for R.
Journal of Statistical Software, 26(3):1–22, 2008.

[10] R. Hyndman, A. Koehler, J. Ord, and R. Snyder. Forecasting with Exponential Smoothing: The
State Space Approach. Springer, 1st edition, 2008.

[11] P. McCullach and J.A. Nelder. Generalized Linear Models. Number 37 in Monographs on
Statistics and Applied Probability. Chapman & Hall, 1st edition, 1983.

[12] T. Minka. Expectation propagation for approximate Bayesian inference. In J. Breese and
D. Koller, editors, Uncertainty in Artificial Intelligence 17. Morgan Kaufmann, 2001.

[13] H. Rue and S. Martino. Approximate Bayesian inference for latent Gaussian models by using
integrated nested Laplace approximations. Journal of Roy. Stat. Soc. B, 71(2):319–392, 2009.

[14] L. Snyder and Z. Shen. Fundamentals of Supply Chain Theory. John Wiley & Sons, 1st edition,
2011.

[15] R. Snyder, J. Ord, and A. Beaumont. Forecasting the intermittent demand for slow-moving
inventories: A modelling approach. International Journal on Forecasting, 28:485–496, 2012.

[16] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. Franklin, S. Shenker,
and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX conference on Networked Systems Design and
Implementation (NSDI), page 2, 2012.

9

