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Abstract

We propose a multi-step inertial Forward–Backward splitting algorithm for mini-
mizing the sum of two non-necessarily convex functions, one of which is proper
lower semi-continuous while the other is differentiable with a Lipschitz continuous
gradient. We first prove global convergence of the algorithm with the help of the
Kurdyka-Łojasiewicz property. Then, when the non-smooth part is also partly
smooth relative to a smooth submanifold, we establish finite identification of the
latter and provide sharp local linear convergence analysis. The proposed method is
illustrated on several problems arising from statistics and machine learning.

1 Introduction

1.1 Non-convex non-smooth optimization

Non-smooth optimization has proved extremely useful to all quantitative disciplines of science
including statistics and machine learning. A common trend in modern science is the increase in size
of datasets, which drives the need for more efficient optimization schemes. For large-scale problems
with non-smooth and possibly non-convex terms, it is possible to generalize gradient descent with
the Forward–Backward (FB) splitting scheme [3] (a.k.a proximal gradient descent), which includes
projected gradient descent as a sub-case.

Formally, we equip Rn the n-dimensional Euclidean space with the standard inner product 〈·, ·〉 and
associated norm || · || respectively. Our goal is the generic minimization of composite objectives of
the form

min
x∈Rn

{
Φ(x)

def
= R(x) + F (x)

}
, (P)

where we have

(A.1) R : Rn → R ∪ {+∞} is the penalty function which is proper lower semi-continuous (lsc),
and bounded from below;

(A.2) F : Rn → R is the loss function which is finite-valued, differentiable and its gradient∇F
is L-Lipschitz continuous.

Throughout, no convexity is imposed neither on R nor on F .

The class of problems we consider is that of non-smooth and non-convex optimization problems.
Here are some examples that are of particular relevance to problems in regression, machine learning
and classification.

Example 1.1 (Sparse regression). LetA ∈ Rm×n, y ∈ Rm, µ > 0, and ||x||0 is the `0 pseudo-norm
(see Example 4.1). Consider (see e.g. [11])

min
x∈Rn

1
2
||y −Ax||2 + µ||x||0. (1.1)
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Example 1.2 (Principal component pursuit (PCP)). The PCP problem [9] aims at decomposing a
given matrix into sparse and low-rank components

min
(xs,xl)∈(Rn1×n2 )2

1
2
||y − xs − xl||2F + µ1||xs||0 + µ2rank(xl), (1.2)

where || · ||F is the Frobenius norm and µ1 and µ2 > 0.

Example 1.3 (Sparse Support Vector Machines). One would like to find a linear decision function
which minimizes the objective

min
(b,x)∈R×Rn

1
m

∑m

i=1
G(〈x, zi〉+ b, yi) + µ||x||0, (1.3)

where for i = 1, · · · ,m, (zi, yi) ∈ Rn × {±1} is the training set, and G is a smooth loss function
with Lipschitz-continuous gradient such as the squared hinge loss G(ŷi, yi) = max(0, 1− ŷiyi)2 or
the logistic loss G(ŷi, yi) = log(1 + e−ŷiyi).

(Inertial) Forward–Backward The Forward–Backward splitting method for solving (P) reads

xk+1 ∈ proxγkR
(
xk − γk∇F (xk)

)
, (1.4)

where γk > 0 is a descent step-size, and

proxγR(·) def
= Argminx∈Rn

1
2
||x− ·||2 + γR(x), (1.5)

denotes the proximity operator of R. proxγR(x) is non-empty under (A.1) and is set-valued in
general. Lower-boundedness of R can be relaxed by requiring e.g. coercivity of the objective in (1.5).

Since the pioneering work of Polyak [24] on the heavy-ball method approach to gradient descent,
several works have adapted this methodology to various optimization schemes. For instance, the
inertial proximal point algorithm [1, 2], or the inertial FB methods [22, 21, 4, 20]. The FISTA scheme
[5, 10] also belongs to this class. See [20] for a detailed account.

The non-convex case In the context of non-convex optimization, [3] was the first to establish
convergence of the FB iterates when the objective Φ satisfies the Kurdyka-Łojasiewicz property1.
Following their footprints, [8, 23] established convergence of the special inertial schemes in [22] in
the non-convex setting.

1.2 Contributions

In this paper, we introduce a novel inertial scheme (Algorithm 1) and study its global and local
properties to solve the non-smooth and non-convex optimization problem (P). More precisely, our
main contributions can be summarized as follows.

A globally convergent general inertial scheme We propose a general multi-step inertial FB (MiFB)
algorithm to solve (P). This algorithm is very flexible as it allows higher memory and even negative
inertial parameters (unlike previous work [20]). Global convergence of any bounded sequence
of iterates to a critical point is proved when the objective Φ is lower-bounded and satisfies the
Kurdyka-Łojasiewicz property.

Local convergence properties under partial smoothness Under the additional assumptions that
the smooth part is locally C2 around a critical point x? (where xk → x?), and that the non-smooth
component R is partly smooth (see Definition 3.1) relative to an active submanifoldMx? , we show
thatMx? can be identified in finite time, i.e.xk ∈ Mx? for all k large enough. Building on this
finite identification result, we provide a sharp local linear convergence analysis and we characterize
precisely the corresponding convergence rate which, in particular, reveals the role ofMx? . Moreover,
this local convergence analysis naturally opens the door to higher-order acceleration, since under
some circumstances, the original problem (P) is eventually equivalent to locally minimizing Φ on
Mx? , and partial smoothness implies that Φ is actually C2 onMx? .

1We are aware of the works existing on convergence of the objective sequence Φ(xk) of FB, including
rates, in the non-smooth and non-convex setting. But given that, in general, this does not say anything about
convergence of the sequence of iterates xk, they are irrelevant to our discussion.
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Algorithm 1: A Multi-step Inertial Forward–Backward (MiFB)
Initial: s ≥ 1 is an integer, I = {0, 1, . . . , s− 1}, x0 ∈ Rn and x−s = . . . = x−1 = x0.
repeat

Let 0 < γ ≤ γk ≤ γ < 1
L , {a0,k, a1,k, . . .} ∈]− 1, 2]s, {b0,k, b1,k, . . .} ∈]− 1, 2]s:

ya,k = xk +
∑
i∈Iai,k(xk−i − xk−i−1),

yb,k = xk +
∑
i∈Ibi,k(xk−i − xk−i−1),

(1.6)

xk+1 ∈ proxγkR
(
ya,k − γk∇F (yb,k)

)
. (1.7)

k = k + 1;
until convergence;

1.3 Notations

Throughout the paper, N is the set of non-negative integers. For a nonempty closed convex set
Ω ⊂ Rn, ri(Ω) is its relative interior, and par(Ω) = R(Ω− Ω) is the subspace parallel to it.

Let R : Rn → R ∪ {+∞} be a lsc function, its domain is defined as dom(R)
def
= {x ∈ Rn : R(x) <

+∞}, and it is said to be proper if dom(R) 6= ∅. We need the following notions from variational
analysis, see e.g. [25] for details. Given x ∈ dom(R), the Fréchet subdifferential ∂FR(x) of R at x,
is the set of vectors v ∈ Rn that satisfies lim infz→x, z 6=x

1
||x−z|| (R(z)−R(x)− 〈v, z − x〉) ≥ 0. If

x /∈ dom(R), then ∂FR(x) = ∅. The limiting-subdifferential (or simply subdifferential) of R at x,
written as ∂R(x), is defined as ∂R(x)

def
= {v ∈ Rn : ∃xk → x,R(xk) → R(x), vk ∈ ∂FR(xk) →

v}. Denote dom(∂R)
def
= {x ∈ Rn : ∂R(x) 6= ∅}. Both ∂FR(x) and ∂R(x) are closed, with ∂FR(x)

convex and ∂FR(x) ⊂ ∂R(x) [25, Proposition 8.5]. Since R is lsc, it is (subdifferentially) regular at
x if and only if ∂FR(x) = ∂R(x) [25, Corollary 8.11].

An lsc function R is r-prox-regular at x̄ ∈ dom(R) for v̄ ∈ ∂R(x̄) if ∃r > 0 such that R(x′) >

R(x) + 〈v, x′ − x〉 − 1
2r ||x− x

′||2 ∀x, x′ near x̄, R(x) near R(x̄) and v ∈ ∂R(x) near v̄.

A necessary condition for x to be a minimizer of R is 0 ∈ ∂R(x). The set of critical points of R is
crit(R) = {x ∈ Rn : 0 ∈ ∂R(x)}.

2 Global convergence of MiFB

2.1 Kurdyka-Łojasiewicz property

Let R : Rn → R ∪ {+∞} be a proper lsc function. For η1, η2 such that −∞ < η1 < η2 < +∞,
define the set [η1 < R < η2]

def
= {x ∈ Rn : η1 < R(x) < η2}.

Definition 2.1. R is said to have the Kurdyka-Łojasiewicz property at x̄ ∈ dom(R) if there exists
η ∈]0,+∞], a neighbourhood U of x̄ and a continuous concave function ϕ : [0, η[→ R+ such that

(i) ϕ(0) = 0, ϕ is C1 on ]0, η[, and for all s ∈]0, η[, ϕ′(s) > 0;
(ii) for all x ∈ U ∩ [R(x̄) < R < R(x̄) + η], the Kurdyka-Łojasiewicz inequality holds

ϕ′
(
R(x)−R(x̄)

)
dist

(
0, ∂R(x)

)
≥ 1. (2.1)

Proper lsc functions which satisfy the Kurdyka-Łojasiewicz property at each point of dom(∂R) are
called KL functions.
Roughly speaking, KL functions become sharp up to reparameterization viaϕ, called a desingularizing
function forR. Typical KL functions are the class of semi-algebraic functions, see [6, 7]. For instance,
the `0 pseudo-norm and the rank function (see Example 1.1-1.3 and Section 4.1) are indeed KL.

2.2 Global convergence

Let µ, ν > 0 be two constants. For i ∈ I and k ∈ N, define the following quantities,

βk
def
=

1 − γkL− µ− νγk
2γk

, β
def
= lim inf

k∈N
βk and αi,k

def
=

sa2i,k
2γkµ

+
sb2i,kL

2

2ν
, αi

def
= lim sup

k∈N
αi,k. (2.2)
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Theorem 2.2 (Convergence of MiFB (Algorithm 1)). For problem (P), suppose that (A.1)-(A.2)
hold, and moreover Φ is a proper lsc KL function. For Algorithm 1, choose µ, ν, γk, ai,k, bi,k such
that

δ
def
= β −

∑
i∈Iαi > 0. (2.3)

Then each bounded sequence {xk}k∈N generated by MiFB satisfies

(i) {xk}k∈N has finite length, i.e.
∑
k∈N ||xk − xk−1|| < +∞;

(ii) There exists a critical point x? ∈ crit(Φ) such that limk→∞ xk = x?.
(iii) If Φ has the KL property at a global minimizer x?, then starting sufficiently close from x?,

any sequence {xk}k∈N converges to a global minimum of Φ and satisfies (i).

The proof is detailed in the supplementary material.
Remark 2.3.

(i) The convergence result holds true for any real Hilbert space. The boundedness of {xk}k∈N
is automatically ensured under standard assumptions such as coercivity of Φ.

(ii) It is known from [13] that if the desingularizing function ϕ = C
θ t
θ, C > 0 and θ ∈ [ 12 , 1[,

then global linear convergence of the objective and the iterates can be derived. However, we
will not pursue this further since our main interest is local linear convergence.

(iii) Unlike existing work, negative inertial parameters are allowed by Theorem 2.2.
(iv) When ai,k ≡ 0 and bi,k ≡ 0, i.e. the case of FB splitting, condition (2.3) holds naturally as

long as γ < 1
L which recovers the case of [3];

(v) From (2.2) and (2.3), we conclude the following:
(a) s = 1: if b0,k ≡ b, a0,k ≡ a (i.e. constant inertial parameters), then (2.3) implies that

a, b belong to an ellipsoid: a2

2γµ + b2

2ν/L2 < β = 1−γL−µ−νγ
2γ .

(b) When s ≥ 2, for each i ∈ I , let bi,k = ai,k ≡ ai (i.e. constant symmetric inertial
parameters), then (2.3) means that the ai’s live in a ball: ( 1

2γµ + 1
2ν/L2 )

∑
i∈I a

2
i < β.

An empirical approach for inertial parameters Besides Theorem 2.2, we also provide an empirical
bound for the choice of the inertial parameters. Consider the setting: γk ≡ γ ∈]0, 1/L[ and bi,k =
ai,k ≡ ai ∈]− 1, 2[, i ∈ I . We have the following empirical bound for the summand

∑
i∈I ai:∑

iai ∈
]
0,min

{
1, 1/L−γ
|2γ−1/L|

}[
. (2.4)

To ensure the convergence {xk}k∈N, an online updating rule should be applied together with the
empirical bound. More precisely, choose ai according to (2.4). Then for each k ∈ N, let bi,k = ai,k
and choose ai,k such that

∑
i ai,k = min{

∑
i ai, ck} where ck > 0 is such that {ck

∑
i∈I ||xk−i −

xk−i−1||}k∈N is summable. For instance, ck = c
k1+q

∑
i∈I ||xk−i−xk−i−1|| , c > 0, q > 0.

Note that the allowed choices of the summand
∑
i ai by (2.4) is larger than those of Theorem 2.2. For

instance, (2.4) allows
∑
i ai = 1 for γ ∈]0, 2

3L ]. While for Theorem 2.2,
∑
i ai = 1 can be reached

only when γ → 0.

3 Local convergence properties of MiFB

3.1 Partial smoothness

LetM⊂ Rn be a C2-smooth submanifold, let TM(x) the tangent space ofM at any point x ∈M.
Definition 3.1. The function R : Rn → R ∪ {+∞} is C2-partly smooth at x̄ ∈ M relative toM
for v̄ ∈ ∂R(x̄) 6= ∅ ifM is a C2-submanifold around x̄, and

(i) (Smoothness): R restricted toM is C2 around x̄;
(ii) (Regularity): R is regular at all x ∈M near x̄ and R is r-prox-regular at x̄ for v̄;

(iii) (Sharpness): TM(x̄) = par(∂R(x))⊥;
(iv) (Continuity): The set-valued mapping ∂R is continuous at x̄ relative toM.

We denote the class of partly smooth functions at x relative to M for v as PSFx,v(M). Partial
smoothness was first introduced in [15] and its directional version stated here is due to [18, 12].
Prox-regularity is sufficient to ensure that the partly smooth submanifolds are locally unique [18,
Corollary 4.12], [12, Lemma 2.3 and Proposition 10.12].
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3.2 Finite activity identification

One of the key consequences of partial smoothness is finite identification of the partial smoothness
submanifold associated to R for problem (P). This is formalized in the following statement.
Theorem 3.2 (Finite activity identification). Suppose that Algorithm 1 is run under the conditions
of Theorem 2.2, such that the generated sequence {xk}k∈N converges to a critical point x? ∈ crit(Φ).
Assume that R ∈ PSFx?,−∇F (x?)(Mx?) and the non-degeneracy condition

−∇F (x?) ∈ ri
(
∂R(x?)

)
, (ND)

holds. Then, xk ∈Mx? for all k large enough.

See the supplementary material for the proof. This result generalizes that of [20] to the non-convex
case and multiple inertial steps.

3.3 Local linear convergence

Given γ ∈]0, 1
L [ and a critical point x? ∈ crit(Φ), let Mx? be a C2-smooth submanifold and

R ∈ PSFx?,−∇F (x?)(Mx?). Denote Tx?
def
= TMx? (x?) and the following matrices which are all

symmetric,

H
def
= γPTx?∇2F (x?)PTx? , G

def
= Id−H, Q

def
= γ∇2

Mx? Φ(x?)PTx? −H, (3.1)

where ∇2
Mx?

Φ is the Riemannian Hessian of Φ along the submanifoldMx? (readers may refer to
the supplementary material from more details on differential calculus on Riemannian manifolds).

To state our local linear convergence result, the following assumptions will play a key role.

Restricted injectivity Besides the local C2-smoothness assumption on F , following the idea of
[19, 20], we assume the restricted injectivity condition,

ker
(
∇2F (x?)

)
∩ Tx? = {0}. (RI)

Positive semi-definiteness of Q Assume that Q is positive semi-definite, i.e. ∀h ∈ Tx? ,

〈h, Qh〉 ≥ 0. (3.2)

Under (3.2), Id +Q is symmetric positive definite, hence invertible, we denote P def
= (Id +Q)−1.

Convergent parameters The parameters of MiFB (Algorithm 1), are convergent, i.e.

ai,k → ai, bi,k → bi, ∀i ∈ I and γk → γ ∈ [γ,min{γ, r̄}], (3.3)

where r̄ < r, and r is the prox-regularity modulus of R (see Definition 3.1).
Remark 3.3.

(i) Condition (3.2) can be met by various non-convex functions, such as polyhedral functions,
including the `0 pseudo-norm. For the rank function, it is also observed that this condition
holds in our numerical experiments of Section 4.

(ii) Condition (3.3) asserts that both the inertial parameters (ai,k, bi,k) and the step-size γk
should converge to some limit points, and this condition cannot be relaxed in general.

(iii) It can be shown that conditions (3.2) and (RI) together imply that x? is a local minimizer
of Φ in (P), and Φ grows at least quadratically near x?. The arguments to prove this are
essentially adapted from those used to show [20, Proposition 4.1(ii)].

We need the following notations:

M0
def
= (a0 − b0)P + (1 + b0)PG, Ms

def
= −(as−1 − bs−1)P − bs−1PG,

Mi
def
= −

(
(ai−1 − ai)− (bi−1 − bi)

)
P − (bi−1 − bi)PG, i = 1, ..., s− 1,

M
def
=


M0 · · · Ms−1 Ms

Id · · · 0 0
...

. . .
...

...
0 · · · Id 0

 , dk def
=

 xk − x?
...

xk−s − x?

 .

(3.4)
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Theorem 3.4 (Local linear convergence). Suppose that Algorithm 1is run under the setting of
Theorem 3.2. Moreover, assume that (RI), (3.2) and (3.3) hold. Then for all k large enough,

dk+1 = Mdk + o(||dk||). (3.5)

If ρ(M) < 1, then given any ρ ∈]ρ(M), 1[, there exists K ∈ N such that ∀k ≥ K,

||xk − x?|| = O(ρk−K). (3.6)

In particular, if s = 1, then ρ(M) < 1 if R is locally polyhedral around x? or if a0 = b0.

See the supplementary material for the proof.
Remark 3.5.

(i) When s = 1, ρ(M) can be given explicitly in terms of the parameters of the algorithm (i.e. a0,
b0 and γ), see [20, Section 4.2] for details. However, the spectral analysis of M becomes
much more complicated to get for s ≥ 2, where the analysis of at least cubic equations are
involved. Therefore, for the sake of brevity, we shall skip the detailed discussion here.

(ii) When s = 1, it was shown in [20] that the optimal convergence rate that can be obtained
by 1-step inertial scheme with fixed γ is ρ?s=1 = 1−

√
1− τγ, where from condition (RI),

continuity of∇2F at x? implies that there exists τ > 0 and a neighbourhood of x? such that
〈h, ∇2F (x?)h〉 ≥ τ ||h||2, for all h ∈ Tx? . As we will see in the numerical experiments of
Section 4, such a rate can be improved by our multi-step inertial scheme. Taking s = 2 for
example, we will show that for a certain class of functions, the optimal local linear rate is
close to or even is ρ?s=2 = 1− 3√

1− τγ, which is obviously faster than ρ?s=1.
(iii) Though it can be satisfied for many problems in practice, the restricted injectivity (RI) can

be removed for some penalties R, for instance, when R is locally polyhedral near x?.

4 Numerical experiments

In this section, we illustrate our results with some numerical experiments carried out on the problems
in Example 1.1, 1.2 and 1.3.

4.1 Examples of KL and partly smooth functions

All the objectives Φ in the above mentioned examples are continuous KL functions. Indeed, in
Example 1.1 and 1.2, Φ is the sum of semi-algebraic functions which is also semi-algebraic. In
Example 1.3, Φ is also algebraic when G is the squared hinge loss, and definable in an o-minimal
structure for the logistic loss (see e.g. [26] for material on o-minimal structures).

Moreover, R is partly smooth in all these examples as we show now.
Example 4.1 (`0 pseudo-norm). The `0 pseudo-norm is locally constant. Moreover, it is regular on
Rn ([14, Remark 2]) and its subdifferential is given by (see [14, Theorem 1])

∂||x||0 = span
(
(ei)i∈supp(x)c

)
,

where (ei)i=1,...,n is the standard basis, and supp(x) =
{
i : xi 6= 0

}
. The proximity operator of

`0-norm is given by hard-thresholding,

proxγ||x||0(z) =


z if |z| >

√
2γ,

sign(z)[0, z] if |z| =
√

2γ,

0 if |z| <
√

2γ.

It can then be easily verified that the `0 pseudo-norm is partly smooth at any x relative to the subspace

Mx = Tx =
{
z ∈ Rn : supp(z) ⊂ supp(x)

}
.

It is also prox-regular at x for any bounded v ∈ ∂||x||0. Note also condition (ND) is automatically
verified and that the Riemannian gradient and Hessian along Tx of || · ||0 vanish.
Example 4.2 (Rank). The rank function is the spectral extension of `0 pseudo-norm to matrix-
valued data x ∈ Rn1×n2 [17]. Consider a singular value decomposition (SVD) of x, i.e.x =
Udiag(σ(x))V ∗, where U = {u1, . . . , un}, V = {v1, . . . , vn} are orthonormal matrices, and
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σ(x) = (σi(x))i=1,...,n is the vector of singular values. By definition, rank(x)
def
= ||σ(x)||0. Thus the

rank function is partly smooth relative at x to the set of fixed rank matrices

Mx =
{
z ∈ Rn1×n2 : rank(z) = rank(x)

}
,

which is a C2-smooth submanifold [16]. The tangent space ofMx at x is

TMx
(x) = Tx =

{
z ∈ Rn1×n2 : u∗i zvj = 0, for all r < i ≤ n1, r < j ≤ n2

}
,

The rank function is also regular its subdifferential reads

∂rank(x) = U∂
(
||σ(x)||0

)
V ∗ = Uspan

(
(ei)i∈supp(σ(x))c

)
V ∗,

which is a vector space (see [14, Theorem 4 and Proposition 1]). The proximity operator of rank
function amounts to applying hard-thresholding to the singular values. Observe that by definition of
Mx, the Riemannian gradient and Hessian of the rank function alongMx also vanish.

For Example 1.2, it is worth noting from the above examples and separability of the regularizer that
the latter is also partly smooth relative to the cartesian product of the partial smoothness submanifolds
of `0 and the rank function.

4.2 Experimental results

For the problem in Example 1.1, we generated y = Axob + ω with m = 48, n = 128, the entries of
A are i.i.d. zero-mean and unit variance Gaussian, xob is 8-sparse, and ω ∈ Rm is an additive noise
with small variance.

For the problem in Example 1.2, we generated y = xs+xl+ω, with n1 = n2 = 50, xs is 250-sparse,
and the rank of xl is 5, and ω is an additive noise with small variance.

For Example 1.3, we generated m = 64 training samples with n = 96-dimensional feature space.

For all presented numerical results, 3 different settings were tested:

• the FB method, with γk ≡ 0.3/L, noted as “FB”;
• MiFB with s = 1, bk = ak ≡ a and γk ≡ 0.3/L, noted as “1-iFB”;
• MiFB with s = 2, bi,k = ai,k ≡ ai, i = 0, 1 and γk ≡ 0.3/L, noted as “2-iFB”.

Tightness of theoretical prediction The convergence profiles of ||xk − x?|| are shown in Figure 1.
As it can be seen from all the plots, finite identification and local linear convergence indeed occur. The
positions of the green dots indicate the iteration from which xk numerically identifies the submanifold
Mx? . The solid lines (“P”) represents practical observations, while the dashed lines (“T”) denotes
theoretical predictions.

As the Riemannian Hessians of `0 and the rank both vanish in all examples, our predicted rates
coincide exactly with the observed ones (same slopes for the dashed and solid lines).
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Figure 1: Finite identification and local linear convergence of MiFB under different inertial settings
in terms of ||xk − x?||. “P” stands for practical observation and “T” indicates the theoretical estimate.
We fix γk ≡ 0.3/L for all tests. For the 2 inertial schemes, inertial parameters are first chosen such
that (2.3) holds. The position of the green dot in each plot indicates the iteration beyond which
identification ofMx? occurs.
Comparison of the methods Under the tested settings, we draw the following remarks on the
comparison of the inertial schemes:
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• The MiFB scheme is much faster than FB both globally and locally. Finite activity identifi-
cation also occurs earlier for MiFB than for FB;

• Comparing the two MIFB inertial schemes, “2-iFB” outperforms “1-iFB”, showing the
advantages of a 2-step inertial scheme over the 1-step one.

Optimal first-order method To highlight the potential of multiple steps in MiFB, for the “2-iFB”
scheme, we also added an example where we locally optimized the rate for the inertial parmeters. See
the magenta lines all the examples, where the solid line corresponds to the observed profile for the
optimal inertial parameters, the dashed line stands for the rate 1−

√
1− τγ, and the dotted line is

that of 1− 3√
1− τγ, which shows indeed that a faster linear rate can be obtained owing to multiple

inertial parameters.

We refer to [20, Section 4.5] for the optimal choice of inertial parameters for the case s = 1.

The empirical bound (2.4) and inertial steps s We now present a short comparison of the empirical
bound (2.4) of inertial parameters and different choices of s under bigger choice of γ = 0.8/L. MiFB
with 3 inertial steps, i.e. s = 3, is added which is noted as “3-iFB”, see the magenta line in Figure 2.

Similar to the above experiments, we choose bi,k = ai,k ≡ ai, i ∈ I , and “Thm 2.2” means that ai’s
are chosen according to Theorem 2.2, while “Bnd (2.4)” means that ai’s are chosen based on the
empirical bound (2.4). We can infer from Figure 2 the following. Compared to the results in Figure 1,
a bigger choice of γ leads to faster convergence. Yet still, under the same choice of γ, MiFB is faster
than FB both locally and globally; For either “Thm 2.2” or “Bnd (2.4)”, the performance of the three
MiFB schemes are close, this is mainly due to the fact that values of the sum

∑
i∈Iai for each scheme

are close. Then between “Thm 2.2” and “Bnd (2.4)”, “Bnd (2.4)” shows faster convergence result,
since the allowed value of

∑
i∈Iai of (2.4) is bigger than that of Theorem 2.2. It should be noted that,

when γ ∈]0, 2
3L ], the largest value of

∑
i∈Iai allowed by (2.4) is 1. If we choose

∑
i∈Iai equal or

very close to 1, then it can be observed in practice that MiFB locally oscillates, which is a well-known
property of the FISTA scheme [5, 10]. We refer to [20, Section 4.4] for discussions of the properties
of such oscillation behaviour.
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Figure 2: Comparison of MiFB under different inertial settings. We fix γk ≡ 0.8/L for all tests. For
the three inertial schemes, the inertial parameters were chosen such that (2.3) holds.
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