
Visual Question Answering with
Question Representation Update (QRU)

Ruiyu Li Jiaya Jia
The Chinese University of Hong Kong
{ryli,leojia}@cse.cuhk.edu.hk

Abstract

Our method aims at reasoning over natural language questions and visual images.
Given a natural language question about an image, our model updates the question
representation iteratively by selecting image regions relevant to the query and
learns to give the correct answer. Our model contains several reasoning layers,
exploiting complex visual relations in the visual question answering (VQA) task.
The proposed network is end-to-end trainable through back-propagation, where its
weights are initialized using pre-trained convolutional neural network (CNN) and
gated recurrent unit (GRU). Our method is evaluated on challenging datasets of
COCO-QA [19] and VQA [2] and yields state-of-the-art performance.

1 Introduction

Visual question answering (VQA) is a new research direction as intersection of computer vision and
natural language processing. Developing stable systems for VQA attracts increasing interests in
multiple communities. Possible applications include bidirectional image-sentence retrieval, human
computer interaction, blind person assistance, etc. It is now still a difficult problem due to many
challenges in visual object recognition and grounding, natural language representation, and common
sense reasoning.

Most recently proposed VQA models are based on image captioning [10, 24, 28]. These methods
have been advanced by the great success of deep learning on building language models [23], image
classification [12] and on visual object detection [6]. Compared with image captioning, where a
plausible description is produced for a given image, VQA requires algorithms to give the correct
answer to a specific human-raised question regarding the content of a given image. It is a more
complex research problem since the method is required to answer different types of questions.
An example related to image content is “What is the color of the dog?”. There are also
questions requiring extra knowledge or commonsense reasoning, such as “Does it appear to be
rainy?".

Properly modeling questions is essential for solving the VQA problem. A commonly employed
strategy is to use a CNN or an RNN to extract semantic vectors. The general issue is that the resulting
question representation lacks detailed information from the given image, which however is vital
for understanding visual content. We take the question and image in Figure 1 as an example. To
answer the original question “What is sitting amongst things have been abandoned?",
one needs to know the target object location. Thus the question can be more specific as “What is
discarded on the side of a building near an old book shelf?".

In this paper, we propose a neural network based reasoning model that is able to update the question
representation iteratively by inferring image information. With this new system, it is now possible
to make questions more specific than the original ones focusing on important image information
automatically. Our approach is based on neural reasoner [18], which has recently shown remarkable
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(a) (b)

Question: What is sitting
amongst things have been
abandoned?
Answer: Toilet.

Before: What sits in the
room that appears to be
partially abandoned?

Updated: What is discarded
on the side of a building
near an old book shelf?

Figure 1: The questions asked by human can be ambiguous given an image containing various objects.
The Before and Updated questions are the most similar ones based on the cosine similarity to the
original Question before and after applying our algorithm to update representation. (b) shows the
attention masks generated by our model.

success in text question answering tasks. Neural reasoner updates the question by interacting it with
supporting facts through multiple reasoning layers. We note applying this model to VQA is nontrivial
since the facts are in the form of an image. Thus image region information is extracted in our
model. To determine the relevance between question and each image region, we employ the attention
mechanism to generate the attention distribution over regions of the image. Our contributions are as
follows.

• We present a reasoning network to iteratively update the question representation after each
time the question interacts with image content.

• Our model utilizes object proposals to obtain candidate image regions and has the ability to
focus on image regions relevant to the question.

We evaluate and compare the performance of our model on two challenging VQA datasets – i.e.,
COCO-QA [19] and VQA [2]. Experiments demonstrate the ability of our model to infer image
regions relevant to the question.

2 Related Work

Research on visual question answering is mostly driven by text question answering and image
captioning methods. In natural language processing, question answering is a well-studied problem. In
[22], an end-to-end memory network was used with a recurrent attention model over a large external
memory. Compared with the original memory network, it has less supervision and shows comparable
results on the QA task. The neural reasoning system proposed in [18], named neural reasoner, can
utilize multiple supporting facts and find an answer. Decent performance was achieved on positional
reasoning and path finding QA tasks.

VQA is closely related to image captioning [10, 24, 28, 5]. In [5], a set of likely words are detected
in several regions of the image and are combined together using a language model to generate image
description. In [10], a structured max-margin objective was used for deep neural networks. It learns to
embed both visual and language data into a common multi-modal space. Vinyals et al. [24] extracted
high-level image feature vectors from CNN and took them as the first input to the recurrent network
to generate caption. Xu et al. [28] integrated visual attention in the recurrent network. The proposed
algorithm predicts one word at a time by looking at local image regions relevant to the currently
generated word.

Malinowski et al. [15] first introduced a solution addressing the VQA problem. It combines natural
language processing with semantic segmentation in a Bayesian framework for automatic question
answering. Since it, several neural network based models [16, 19, 2] were proposed to solve the
VQA problem. These models use CNN to extract image features and recurrent neural networks to
embed questions. The embedded image and question features are then fused by concatenation [16]
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Figure 2: The overall architecture of our model with single reasoning layer for VQA.

or element-wise addition [29] to predict answers. Recently several models integrated the attention
mechanism [29, 27, 3, 20] and showed the ability of their networks to focus on image regions related
to the question.

There also exist other approaches for VQA. For example, Xiong et al. [26] proposed an improved
dynamic memory network to fuse the question and image region representations using bi-directional
GRU. The algorithm of [1] learns to compose a network from a collection of composable modules.
Ma et al. [14] made use of CNN and proposed a model with three CNNs to capture information of
the image, question and multi-modal representation.

3 Our Model

The overall architecture of our model is illustrated in Figure 2. The model is derived from the neural
reasoner [18], which is able to update the representation of question recursively by inferring over
multiple supporting facts. Our model yet contains a few inherently different components. Since
VQA involves only one question and one image each time instead of a set of facts, we use object
proposal to obtain candidate image regions serving as the facts in our model. Moreover, in the
pooling step, we employ an attention mechanism to determine the relevance between representation
of original questions and updated ones. Our network consists of four major components – i.e., image
understanding, question encoding, reasoning and answering layers.

3.1 Image Understanding Layer

The image understanding layer is designed for modeling image content into semantic vectors. We
build this layer upon the VGG model with 19 weight layers [21]. It is pre-trained on ImageNet [4].
The network has sixteen convolutional layers and five max-pooling layers of kernel size 2× 2 with
stride 2, followed by two fully-connected layers with 4,096 neurons.

Using a global representation of the image may fail to capture all necessary information for answering
the question involving multiple objects and spatial configuration. Moreover, since most of the
questions are related to objects [19, 2], we utilize object proposal generator to produce a set of
candidate regions that are most likely to be an object. For each image, we choose candidate regions
by extracting the top 19 detected edge boxes [31]. We choose intersection over union (IoU) value 0.3
when performing non-maximum suppression, which is a common setting in object detection.

Additionally, the whole image region is added to capture the global information in the image
understanding layer, resulting in 20 candidate regions per image. We extract features from each
candidate region through the above mentioned CNN, bringing a dimension of 4,096 image region
features. The extracted features, however, lack spatial information for object location. To remedy this
issue, we follow the method of [8] to include an 8D representation

[xmin, ymin, xmax, ymax, xcenter, ycenter, wbox, hbox],
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where wbox and hbox are the width and height of the image region. We set the image center as the
origin. The coordinates are normalized to range from −1 to 1. Then each image region is represented
as a 4104D feature denoted as fi where i ∈ [1, 20]. For modeling convenience, we use a single layer
perceptron to transform the image representation into a common latent space shared with the question
feature

vi = φ(Wvf ∗ fi + bvf ), (1)

where φ is the rectified activation function φ(x) = max(0, x).

3.2 Question Encoding Layer

To encode the natural language question, we resort to the recurrent neural network, which has
demonstrated great success on sentence embedding. The question encoding layer is composed of a
word embedding layer and GRU cells. Given a question w = [w1, ..., wT ], where wt is the tth word
in the question and T is the length of the question, we first embed each word wt to a vector space xt
with an embedding matrix xt =Wewt. Then for each time step, we feed xt into GRU sequentially.
At each step, the GRU takes one input vector xt, and updates and outputs a hidden state ht. The final
hidden state hT is considered as the question representation. We also embed it into the common
latent space same as image embedding through a single layer perceptron

q = φ(Wqh ∗ hT + bqh). (2)

We utilize the pre-trained network with skip-thought vectors model [11] designed for general sentence
embedding to initialize our question encoding layer as used in [17]. Note that the skip-thought vectors
model is trained in an unsupervised manner on large language corpus. By fine-tuning the GRU, we
transfer knowledge from natural language corpus to the VQA problem.

3.3 Reasoning Layer

The reasoning layer includes question-image interaction and weighted pooling.

Question-Image Interaction Given that multilayer perceptron (MLP) has the ability to determine
the relationship between two input sentences according to supervision [7, 18]. We examine image
region features and question representation to acquire a good understanding of the question. In a
memory network [22], these image region features are akin to the input memory representation,
which can be retrieved for multiple times according to the question.

There are a total of L reasoning layers. In the lth reasoning layer, the ith interaction happens between
ql−1 and vi through an MLP, resulting in updated question representation qli as

qli =MLPl(q
l−1, vi; θl), (3)

with θl being the model parameter of interaction at the lth reasoning layer. In the simplest case with
one single layer in MLPl, the updating process is given by

qli = φ(Wl ∗ (ql−1 ⊗ vi) + bl), (4)

where ⊗ indicates element-wise multiplication, which performs better in our experiments than other
strategies, e.g., concatenation and element-wise addition.

Generally speaking, qli contains update of network focus towards answering the question after its
interaction with image feature vi. This property is important for the reasoning process [18].

Weighted Pooling Pooling aims to fuse components of the question after its interaction with all
image features to update representation. Two common strategies for pooling are max and mean
pooling. However, when answering a specifical question, it is often the case the correct answer is only
related to particular image regions. Therefore, using max pooling may lead to unsatisfying results
since questions may involve interaction between human and object, while mean pooling may also
cause inferior performance due to noise introduced by regions irrelevant to the question.

To determine the relevance between question and each image region, we resort to the attention
mechanism used in [28] to generate the attention distribution over image regions. For each updated
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question qli after interaction with the ith image region, it is chosen close to the original question
representation ql−1. Hence, the attention weights take the following forms.

Ci = tanh(WA ∗ qli ⊕ (WB ∗ ql−1 + bB)),

P = softmax(WP ∗ C + bP ), (5)

where C is a matrix and its ith column is Ci. P ∈ RM is a M dimensional vector representing the
attention weights. M is the number of image regions, set to 20. Based on the attention distribution,
we calculate weighted average of qli, resulting in the updated question representation ql as

ql =
∑
i

Piq
l
i. (6)

The updated question representation ql after weighted pooling serves as the question input to the next
reasoning or answering layer.

3.4 Answering Layer

Following [19, 2], we model VQA as a classification problem with pre-defined classes. Given the
updated question representation at last reasoning layer qL, a softmax layer is employed to classify qL
into one of the possible answers as

pans = softmax(Wans ∗ qL + bans). (7)

Note instead of the softmax layer for predicting the correct answer, it is also possible to utilize LSTM
or GRU decoder, taking qL as input, to generate free-form answers.

4 Experiments

4.1 Datasets and Evaluation Metrics

We conduct experiments on COCO-QA [19] and VQA [2]. The COCO-QA dataset is based on
Microsoft COCO image data [13]. There are 78,736 training questions and 38,948 test ones, based
on a total of 123,287 images. Four types of questions are provided, including Object, Number, Color
and Location. Each type takes 70%, 7%, 17% and 6% of the whole dataset respectively.

In the VQA dataset, each image from the COCO data is annotated by Amazon Mechanical Turk
(AMT) with three questions. It is the largest for VQA benchmark so far. There are 248,349, 121,512
and 244,302 questions for training, validation and testing, respectively. For each question, ten answers
are provided to take consensus of annotators. Following [2], we choose the top 1,000 most frequent
answers as candidate outputs, which constitutes 82.67% of the train+val answers.

Since we formulate VQA as a classification problem, mean classification accuracy is used to evaluate
the model on the COCO-QA dataset. Besides, Wu-Palmer similarity (WUPS) [25] measure is also
reported on COCO-QA dataset. WUPS calculates similarity between two words based on their
longest common subsequence in the taxonomy tree. Following [19], we use thresholds 0.9 and 0.0 in
our evaluation. VQA dataset provides a different kind of evaluation metric. Since ten ground truth
answers are given, a predicted answer is considered to be correct when three or more ground truth
answers match it. Otherwise, partial score is given.

4.2 Implementation Details

We implement our network using the public Torch computing framework. Before training, all question
sentences are normalized to lower case where question marks are removed. These words are fed into
GRU one by one. The whole answer with one or more words is regarded as a separate class. For
extracting image features, each candidate region is cropped and resized to 224× 224 before feeding
into CNN.

For the COCO-QA dataset, we set the dimension of common latent space to 1,024. Since VQA
dataset is larger than COCO-QA, we double the dimension of common latent space to adapt the data
and classes. On each reasoning layer, we use one single layer in MLP. We test up to two reasoning
layers. No further improvement is observed when using three or more layers.
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Methods ACC. Object Number Color Location
Mean Pooling 58.15 60.61 45.34 55.37 52.74
Max Pooling 59.37 62.11 45.70 55.91 53.63
W/O Global 60.87 63.32 46.68 58.66 55.49
W/O Coord 61.33 63.76 46.24 59.35 56.66
Full Model 61.99 64.53 46.68 59.81 56.82

Table 1: Comparison of ablation models. Models are trained and tested on COCO-QA [19] with one
reasoning layer.

Methods ACC. Object Number Color Location WUPS 0.9 WUPS 0.0
IMG+BOW [19] 55.92 58.66 44.10 51.96 49.39 66.78 88.99

2VIS+BLSTM [19] 55.09 58.17 44.79 49.53 47.34 65.34 88.64
Ensemble [19] 57.84 61.08 47.66 51.48 50.28 67.90 89.52
ABC-CNN [3] 58.10 62.46 45.70 46.81 53.67 68.44 89.85
DPPnet [17] 61.19 - - - - 70.84 90.61

SAN [29] 61.60 64.50 48.60 57.90 54.00 71.60 90.90
QRU (1) 61.99 64.53 46.68 59.81 56.82 71.83 91.11
QRU (2) 62.50 65.06 46.90 60.50 56.99 72.58 91.62

Table 2: Evaluation results on COCO-QA dataset [19]. “QRU (1)” and “QRU (2)” refer to 1 and 2
reasoning layers incorporated in the system.

The network is trained in an end-to-end fashion using stochastic gradient descent with mini-batches
of 100 samples and momentum 0.9. The learning rate starts from 10−3 and decreases by a factor of
10 when validation accuracy stops improving. We use dropout and gradient clipping to regularize the
training process. Our model is denoted as QRU in following experiments.

4.3 Ablation Results

We conduct experiments to exam the usefulness of each component in our model. Specifically, we
compare different question representation pooling mechanisms, i.e., mean pooling and max pooling.
We also train two controlled models devoid of global image feature and spatial coordinate, denoted
as W/O Global and W/O Coord. Table 1 shows the results.

The performance of mean and max pooling models are substantially worse than the full model, which
uses weighted pooling. This indicates that our model benefits from the attention mechanism by
looking at several image regions rather than only one or all of them. A drop of 1.12% in accuracy is
observed if the global image feature is not modeled, confirming that inclusion of the whole image
is important for capturing the global information. Without modeling spatial coordinates also leads
to a drop in accuracy. Notably, the greatest deterioration is on the question type of Object. This is
because the Object type seeks information around the object like “What is next to the stop
sign?". Spatial coordinates help our model reason spatial relationship among objects.

4.4 Comparison with State-of-the-art

We compare performance in Tables 2 and 3 with experimental results on COCO-QA and VQA
respectively. Table 2 shows that our model with only one reasoning layer already outperforms
state-of-the-art 2-layer stacked attention network (SAN) [29]. Two reasoning layers give the best
performance. We also report the per-category accuracy to show the strength and weakness of our
model in Table 2. Our best model outperforms SAN by 2.6% and 2.99% in the question types of
Color and Location respectively, and by 0.56% in Object.

Our analysis is that the SAN model puts its attention on coarser regions obtained from the activation
of last convolutional layer, which may include cluttered and noisy background. In contrast, our model
only deals with selected object proposal regions, which have the good chance to be objects. When
answering questions involving objects, our model gives reasonable results. For the question type
Number, since an object proposal may contain several objects, our counting ability is weakened. In
fact, the counting task is a complete computer vision problem on its own.
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Methods Open-Ended (test-dev) test-std Multiple-Choice (test-dev) test-std
All Y/N Num Other All All Y/N Num Other All

BOWIMG [2] 52.64 75.77 33.67 37.37 - 58.97 75.59 34.35 50.33 -
LSTMIMG [2] 53.74 78.94 35.24 36.42 54.06 57.17 78.95 35.80 43.41 57.57
iBOWIMG [30] 55.72 76.55 35.03 42.62 55.89 61.68 76.68 37.05 54.44 61.97

DPPnet [17] 57.22 80.71 37.24 41.71 57.36 62.48 80.79 38.94 52.16 62.69
SAN [29] 58.70 79.30 36.60 46.10 58.90 - - - - -

WR Sel [20] - - - - - 62.44 77.62 34.28 55.84 62.43
FDA [9] 59.24 81.14 36.16 45.77 59.54 64.01 81.50 39.00 54.72 64.18

DMN+ [26] 60.37 80.75 37.00 48.25 60.36 - - - - -
QRU (1) 59.26 80.98 35.93 45.99 59.44 63.96 81.00 37.08 55.48 64.13
QRU (2) 60.72 82.29 37.02 47.67 60.76 65.43 82.24 38.69 57.12 65.43

Table 3: Evaluation results on VQA dataset [2]. “QRU (1)” and “QRU (2)” refer to 1 and 2 reasoning
layers incorporated in the system.

Original What next to two other open laptops?

Before updating

What next to each other dipicting smartphones?
What next to two boys?

What hooked up to two computers?
What next to each other with visible piping?

What next to two pair of shoes?

After updating
with one

reasoning layer

What are there laying down with two remotes?
What next to each other depicting smartphones?

What hooked up to two computers?
What next to each other with monitors?

What cubicle with four differnet types of computers?

After updating
with two

reasoning layers

What plugged with wires?
What next to each other with monitors?

What are open at the table with cell phones?
What is next to the monitor?

What sits on the desk along with 2 monitors?

Figure 3: Retrieved questions before and after update from COCO-QA dataset [19].

Table 3 shows that our model yields prominent improvement on the Other type when compared
with other models [2, 30, 17] that use global representation of the image. Object proposals in our
model are useful since the Other type contains questions such as “What color · · · ", “What kind
· · · ", “Where is · · · ", etc. Our model outperforms that of [20] by 3% where the latter also exploits
object proposals. Compared with [20], we use less number of object proposals, demonstrating the
effectiveness of our approach. This table also reveals that our model with two reasoning layers
achieve state-of-the-art results for both open-ended and multiple-choice tasks.

4.5 Qualitative Analysis

To understand the ability of our model in updating question representation, we show an image and
several questions in Figure 3. The retrieved questions from the test set are based on the cosine
similarities to the original question before and after our model updates the representation. It is notable
that before update, 4 out of the top 5 similar questions begin with “What next". This is because GRU
acts as the language model, making the obtained questions share similar language structure. After we
update question representation, the resulting ones are more related to image content regarding objects
computers and monitors while the originally retrieved questions contain irrelevant words like boys
and shoes. The retrieved questions become even more informative using two reasoning layers.

We visualize a few attention masks generated by our model in Figure 4. Visualization is created
by soft masking the image with a mask created by summing weights of each region. The mask
is normalized with maximum value 1 followed by small Gaussian blur. Our model is capable of
putting attention on important regions closely relevant to the question. To answer the question “What
is the color of the snowboard?", the proposed model finds the snowboard. For the other
question “The man holding what on top of a snow covered hill?", it is required to infer
the relation among person, snow covered hill, and snowboard. With these attention masks, it is
possible to predict correct answers since irrelevant image regions are ruled out. More examples are
shown in Figure 5.
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(a) (b)
Q: What is the color of the
snowboard?
A: Yellow.

(c)
Q: The man holding what on
top of a snow covered hill?
A: Snowboard.

Figure 4: Visualization of attention masks. Our model learns to attend particular image regions that
are relevant to the question.

Q: What is the color
of the sunflower?

A: Yellow

Q: What is sitting on
top of table in a

workshop?
A: Boat

Q: What is the man in
stadium style seats

using?
A: Phone

Q: What are hogging
a bed by themselfs?

A: Dogs

Q: What next to a
large building?

A: Clock

Figure 5: Visualization of more attention masks.

5 Conclusion

We have proposed an end-to-end trainable neural network for VQA. Our model learns to answer
questions by updating question representation and inferring over a set of image regions with multilayer
perceptron. Visualization of attention masks demonstrates the ability of our model to focus on image
regions highly related to questions. Experimental results are satisfying on the two challenging VQA
datasets. Future work includes improving object counting ability and word-region relation.
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