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Abstract

We propose Sketched Online Newton (SON), an online second order learning
algorithm that enjoys substantially improved regret guarantees for ill-conditioned
data. SON is an enhanced version of the Online Newton Step, which, via sketching
techniques enjoys a running time linear in the dimension and sketch size. We
further develop sparse forms of the sketching methods (such as Oja’s rule), making
the computation linear in the sparsity of features. Together, the algorithm eliminates
all computational obstacles in previous second order online learning approaches.

1 Introduction

Online learning methods are highly successful at rapidly reducing the test error on large, high-
dimensional datasets. First order methods are particularly attractive in such problems as they typically
enjoy computational complexity linear in the input size. However, the convergence of these methods
crucially depends on the geometry of the data; for instance, running the same algorithm on a rotated
set of examples can return vastly inferior results. See Fig. 1 for an illustration.

Second order algorithms such as Online Newton Step [18] have the attractive property of being
invariant to linear transformations of the data, but typically require space and update time quadratic
in the number of dimensions. Furthermore, the dependence on dimension is not improved even
if the examples are sparse. These issues lead to the key question in our work: Can we develop
(approximately) second order online learning algorithms with efficient updates? We show that
the answer is “yes” by developing efficient sketched second order methods with regret guarantees.
Specifically, the three main contributions of this work are:

1. Invariant learning setting and optimal algorithms (Section 2). The typical online regret
minimization setting evaluates against a benchmark that is bounded in some fixed norm (such as the
`2-norm), implicitly putting the problem in a nice geometry. However, if all the features are scaled
down, it is desirable to compare with accordingly larger weights, which is precluded by an apriori
fixed norm bound. We study an invariant learning setting similar to the paper [33] which compares
the learner to a benchmark only constrained to generate bounded predictions on the sequence of
examples. We show that a variant of the Online Newton Step [18], while quadratic in computation,
stays regret-optimal with a nearly matching lower bound in this more general setting.

2. Improved efficiency via sketching (Section 3). To overcome the quadratic running time, we
next develop sketched variants of the Newton update, approximating the second order information
using a small number of carefully chosen directions, called a sketch. While the idea of data sketching
is widely studied [36], as far as we know our work is the first one to apply it to a general adversarial
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online learning setting and provide rigorous regret guarantees. Three different sketching methods are
considered: Random Projections [1, 19], Frequent Directions [12, 23], and Oja’s algorithm [28, 29],
all of which allow linear running time per round. For the first two methods, we prove regret bounds
similar to the full second order update whenever the sketch-size is large enough. Our analysis makes
it easy to plug in other sketching and online PCA methods (e.g. [11]).
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Figure 1: Error rate of SON using Oja’s sketch, and
ADAGRAD on a synthetic ill-conditioned problem.
m is the sketch size (m = 0 is Online Gradient,
m = d resembles Online Newton). SON is nearly
invariant to condition number for m = 10.

3. Sparse updates (Section 4). For practical
implementation, we further develop sparse ver-
sions of these updates with a running time linear
in the sparsity of the examples. The main chal-
lenge here is that even if examples are sparse,
the sketch matrix still quickly becomes dense.
These are the first known sparse implementa-
tions of the Frequent Directions1 and Oja’s algo-
rithm, and require new sparse eigen computation
routines that may be of independent interest.

Empirically, we evaluate our algorithm using
the sparse Oja sketch (called Oja-SON) against
first order methods such as diagonalized ADA-
GRAD [6, 25] on both ill-conditioned synthetic
and a suite of real-world datasets. As Fig. 1
shows for a synthetic problem, we observe sub-
stantial performance gains as data conditioning
worsens. On the real-world datasets, we find
improvements in some instances, while observing no substantial second-order signal in the others.

Related work Our online learning setting is closest to the one proposed in [33], which studies
scale-invariant algorithms, a special case of the invariance property considered here (see also [31,
Section 5]). Computational efficiency, a main concern in this work, is not a problem there since each
coordinate is scaled independently. Orabona and Pál [30] study unrelated notions of invariance. Gao
et al. [9] study a specific randomized sketching method for a special online learning setting.

The L-BFGS algorithm [24] has recently been studied in the stochastic setting2 [3, 26, 27, 34, 35], but
has strong assumptions with pessimistic rates in theory and reliance on the use of large mini-batches
empirically. Recent works [7, 15, 14, 32] employ sketching in stochastic optimization, but do not
provide sparse implementations or extend in an obvious manner to the online setting. The Frank-
Wolfe algorithm [8, 20] is also invariant to linear transformations, but with worse regret bounds [17]
without further assumptions and modifications [10].

Notation Vectors are represented by bold letters (e.g., x, w, . . . ) and matrices by capital letters
(e.g., M , A, . . . ). Mi,j denotes the (i, j) entry of matrix M . Id represents the d× d identity matrix,
0m×d represents the m× d matrix of zeroes, and diag{x} represents a diagonal matrix with x on
the diagonal. λi(A) denotes the i-th largest eigenvalue of A, ‖w‖A denotes

√
w>Aw, |A| is the

determinant of A, TR(A) is the trace of A, 〈A,B〉 denotes
∑
i,j Ai,jBi,j , and A � B means that

B −A is positive semidefinite. The sign function SGN(a) is 1 if a ≥ 0 and −1 otherwise.

2 Setup and an Optimal Algorithm

We consider the following setting. On each round t = 1, 2 . . . , T : (1) the adversary first presents an
example xt ∈ Rd, (2) the learner chooseswt ∈ Rd and predictsw>t xt, (3) the adversary reveals a
loss function ft(w) = `t(w

>xt) for some convex, differentiable `t : R→ R+, and (4) the learner
suffers loss ft(wt) for this round.

The learner’s regret to a comparatorw is defined asRT (w) =
∑T
t=1 ft(wt)−

∑T
t=1 ft(w). Typical

results study RT (w) against all w with a bounded norm in some geometry. For an invariant update,
1Recent work by [13] also studies sparse updates for a more complicated variant of Frequent Directions

which is randomized and incurs extra approximation error.
2Stochastic setting assumes that the examples are drawn i.i.d. from a distribution.
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we relax this requirement and only put bounds on the predictions w>xt. Specifically, for some
pre-chosen constant C we define Kt

def
=
{
w : |w>xt| ≤ C

}
. We seek to minimize regret to all

comparators that generate bounded predictions on every data point, that is:

RT = sup
w∈K

RT (w) where K def
=

T⋂
t=1

Kt =
{
w : ∀t = 1, 2, . . . T, |w>xt| ≤ C

}
.

Under this setup, if the data are transformed to Mxt for all t and some invertible matrix M ∈ Rd×d,
the optimal w∗ simply moves to (M−1)>w∗, which still has bounded predictions but might have
significantly larger norm. This relaxation is similar to the comparator set considered in [33].

We make two structural assumptions on the loss functions.

Assumption 1. (Scalar Lipschitz) The loss function `t satisfies |`′t(z)| ≤ L whenever |z| ≤ C.

Assumption 2. (Curvature) There exists σt ≥ 0 such that for all u,w ∈ K, ft(w) is lower bounded
by ft(u) +∇ft(u)>(w − u) + σt

2

(
∇ft(u)>(u−w)

)2
.

Note that when σt = 0, Assumption 2 merely imposes convexity. More generally, it is satisfied by
squared loss ft(w) = (w>xt − yt)2 with σt = 1

8C2 whenever |w>xt| and |yt| are bounded by C,
as well as for all exp-concave functions (see [18, Lemma 3]).

Enlarging the comparator set might result in worse regret. We next show matching upper and lower
bounds qualitatively similar to the standard setting, but with an extra unavoidable

√
d factor. 3

Theorem 1. For any online algorithm generatingwt ∈ Rd and all T ≥ d, there exists a sequence of
T examples xt ∈ Rd and loss functions `t satisfying Assumptions 1 and 2 (with σt = 0) such that the
regret RT is at least CL

√
dT/2.

We now give an algorithm that matches the lower bound up to logarithmic constants in the worst case
but enjoys much smaller regret when σt 6= 0. At round t+ 1 with some invertible matrix At specified
later and gradient gt = ∇ft(wt), the algorithm performs the following update before making the
prediction on the example xt+1:

ut+1 = wt −A−1
t gt, and wt+1 = argmin

w∈Kt+1

‖w − ut+1‖At
. (1)

The projection onto the set Kt+1 differs from typical norm-based projections as it only enforces
boundedness on xt+1 at round t+ 1. Moreover, this projection step can be performed in closed form.

Lemma 1. For any x 6= 0,u ∈ Rd and positive definite matrix A ∈ Rd×d, we have

argmin
w : |w>x|≤C

‖w − u‖A = u− τC(u>x)

x>A−1x
A−1x, where τC(y) = SGN(y) max{|y| − C, 0}.

If At is a diagonal matrix, updates similar to those of Ross et al. [33] are recovered. We study a
choice of At that is similar to the Online Newton Step (ONS) [18] (though with different projections):

At = αId +

t∑
s=1

(σs + ηs)gsg
>
s (2)

for some parameters α > 0 and ηt ≥ 0. The regret guarantee of this algorithm is shown below:

Theorem 2. Under Assumptions 1 and 2, suppose that σt ≥ σ ≥ 0 for all t, and ηt is non-increasing.
Then using the matrices (2) in the updates (1) yields for all w ∈ K,

RT (w) ≤ α

2
‖w‖22 + 2(CL)2

T∑
t=1

ηt +
d

2(σ + ηT )
ln

(
1 +

(σ + ηT )
∑T
t=1 ‖gt‖

2
2

dα

)
.

3In the standard setting where wt and xt are restricted such that ‖wt‖ ≤ D and ‖xt‖ ≤ X , the minimax
regret is O(DXL

√
T ). This is clearly a special case of our setting with C = DX .
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Algorithm 1 Sketched Online Newton (SON)
Input: Parameters C, α and m.

1: Initialize u1 = 0d×1.
2: Initialize sketch (S,H)← SketchInit(α,m).
3: for t = 1 to T do
4: Receive example xt.
5: Projection step: compute x̂ = Sxt, γ =

τC(u>t xt)

x>t xt−x̂>Hx̂
and setwt = ut − γ(xt − S>Hx̂).

6: Predict label yt = w>t xt and suffer loss `t(yt).
7: Compute gradient gt = `′t(yt)xt and the to-sketch vector ĝ =

√
σt + ηtgt.

8: (S,H)← SketchUpdate(ĝ).
9: Update weight: ut+1 = wt − 1

α (gt − S>HSgt).
10: end for

The dependence on ‖w‖22 implies that the method is not completely invariant to transformations of
the data. This is due to the part αId in At. However, this is not critical since α is fixed and small
while the other part of the bound grows to eventually become the dominating term. Moreover, we
can even set α = 0 and replace the inverse with the Moore-Penrose pseudoinverse to obtain a truly
invariant algorithm, as discussed in Appendix D. We use α > 0 in the remainder for simplicity.

The implication of this regret bound is the following: in the worst case where σ = 0, we set
ηt =

√
d/C2L2t and the bound simplifies to

RT (w) ≤ α

2
‖w‖22 +

CL

2

√
Td ln

(
1 +

∑T
t=1 ‖gt‖

2
2

αCL
√
Td

)
+ 4CL

√
Td ,

essentially only losing a logarithmic factor compared to the lower bound in Theorem 1. On the other
hand, if σt ≥ σ > 0 for all t, then we set ηt = 0 and the regret simplifies to

RT (w) ≤ α

2
‖w‖22 +

d

2σ
ln

(
1 +

σ
∑T
t=1 ‖gt‖

2
2

dα

)
, (3)

extending the O(d lnT ) results in [18] to the weaker Assumption 2 and a larger comparator set K.

3 Efficiency via Sketching

Our algorithm so far requires Ω(d2) time and space just as ONS. In this section we show how to
achieve regret guarantees nearly as good as the above bounds, while keeping computation within a
constant factor of first order methods.

Let Gt ∈ Rt×d be a matrix such that the t-th row is ĝ>t where we define ĝt =
√
σt + ηtgt to be

the to-sketch vector. Our previous choice of At (Eq. (2)) can be written as αId +G>t Gt. The idea
of sketching is to maintain an approximation of Gt, denoted by St ∈ Rm×d where m � d is a
small constant called the sketch size. If m is chosen so that S>t St approximates G>t Gt well, we can
redefine At as αId + S>t St for the algorithm.

To see why this admits an efficient algorithm, notice that by the Woodbury formula one has A−1
t =

1
α

(
Id − S>t (αIm + StS

>
t )−1St

)
. With the notation Ht = (αIm + StS

>
t )−1 ∈ Rm×m and γt =

τC(u>t+1xt+1)/(x>t+1xt+1 − x>t+1S
>
t HtStxt+1), update (1) becomes:

ut+1 = wt − 1
α

(
gt − S>t HtStgt

)
, and wt+1 = ut+1 − γt

(
xt+1 − S>t HtStxt+1

)
.

The operations involving Stgt or Stxt+1 require only O(md) time, while matrix vector products
with Ht require onlyO(m2). Altogether, these updates are at most m times more expensive than first
order algorithms as long as St and Ht can be maintained efficiently. We call this algorithm Sketched
Online Newton (SON) and summarize it in Algorithm 1.

We now discuss three sketching techniques to maintain the matrices St and Ht efficiently, each
requiring O(md) storage and time linear in d.
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Algorithm 2 FD-Sketch for FD-SON
Internal State: S and H .

SketchInit(α,m)
1: Set S = 0m×d and H = 1

αIm.
2: Return (S,H).

SketchUpdate(ĝ)
1: Insert ĝ into the last row of S.
2: Compute eigendecomposition: V >ΣV =

S>S and set S = (Σ− Σm,mIm)
1
2V .

3: Set H = diag
{

1
α+Σ1,1−Σm,m

, · · · , 1
α

}
.

4: Return (S,H).

Algorithm 3 Oja’s Sketch for Oja-SON
Internal State: t, Λ, V and H .

SketchInit(α,m)
1: Set t = 0,Λ = 0m×m, H = 1

αIm and V
to anym×dmatrix with orthonormal rows.

2: Return (0m×d, H).

SketchUpdate(ĝ)
1: Update t← t+ 1, Λ and V as Eqn. 4.
2: Set S = (tΛ)

1
2V .

3: Set H = diag
{

1
α+tΛ1,1

, · · · , 1
α+tΛm,m

}
.

4: Return (S,H).

Random Projection (RP). Random projections are classical methods for sketching [19, 1, 21].
Here we consider Gaussian Random Projection sketch: St = St−1 + rtĝ

>
t , where each entry of

rt ∈ Rm is an independent random Gaussian variable drawn from N (0, 1/
√
m). One can verify that

the update of H−1
t can be realized by two rank-one updates: H−1

t = H−1
t−1 + qtr

>
t + rtq

>
t where

qt = Stĝt −
‖ĝt‖

2
2

2 rt. Using Woodbury formula, this results in O(md) update of S and H (see
Algorithm 6 in Appendix E). We call this combination of SON with RP-sketch RP-SON. When α = 0
this algorithm is invariant to linear transformations for each fixed realization of the randomness.

Using the existing guarantees for RP-sketch, in Appendix E we show a similar regret bound as
Theorem 2 up to constants, provided m = Ω̃(r) where r is the rank of GT . Therefore RP-SON is
near invariant, and gives substantial computational gains when r � d with small regret overhead.

Frequent Directions (FD). When GT is near full-rank, however, RP-SON may not perform well.
To address this, we consider Frequent Directions (FD) sketch [12, 23], a deterministic sketching
method. FD maintains the invariant that the last row of St is always 0. On each round, the vector ĝ>t
is inserted into the last row of St−1, then the covariance of the resulting matrix is eigendecomposed
into V >t ΣtVt and St is set to (Σt − ρtIm)

1
2Vt where ρt is the smallest eigenvalue. Since the rows

of St are orthogonal to each other, Ht is a diagonal matrix and can be maintained efficiently (see
Algorithm 2). The sketch update works in O(md) time (see [12] and Appendix G.2) so the total
running time is O(md) per round. We call this combination FD-SON and prove the following regret
bound with notation Ωk =

∑d
i=k+1 λi(G

>
TGT ) for any k = 0, . . . ,m− 1.

Theorem 3. Under Assumptions 1 and 2, suppose that σt ≥ σ ≥ 0 for all t and ηt is non-increasing.
FD-SON ensures that for any w ∈ K and k = 0, . . . ,m− 1, we have

RT (w) ≤ α

2
‖w‖22 + 2(CL)2

T∑
t=1

ηt +
m

2(σ + ηT )
ln

(
1 +

TR(S>T ST )

mα

)
+

mΩk
2(m− k)(σ + ηT )α

.

Instead of the rank, the bound depends on the spectral decay Ωk, which essentially is the only extra
term compared to the bound in Theorem 2. Similarly to previous discussion, if σt ≥ σ, we get the
bound α

2 ‖w‖
2
2 + m

2σ ln
(

1 +
TR(S>T ST )

mα

)
+ mΩk

2(m−k)σα . With α tuned well, we pay logarithmic regret

for the top m eigenvectors, but a square root regret O(
√

Ωk) for remaining directions not controlled
by our sketch. This is expected for deterministic sketching which focuses on the dominant part of the
spectrum. When α is not tuned we still get sublinear regret as long as Ωk is sublinear.

Oja’s Algorithm. Oja’s algorithm [28, 29] is not usually considered as a sketching algorithm
but seems very natural here. This algorithm uses online gradient descent to find eigenvectors and
eigenvalues of data in a streaming fashion, with the to-sketch vector ĝt’s as the input. Specifically,
let Vt ∈ Rm×d denote the estimated eigenvectors and the diagonal matrix Λt ∈ Rm×m contain the
estimated eigenvalues at the end of round t. Oja’s algorithm updates as:

Λt = (Im − Γt)Λt−1 + Γt diag{Vt−1ĝt}
2
, Vt

orth←−− Vt−1 + ΓtVt−1ĝtĝ
>
t (4)
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where Γt ∈ Rm×m is a diagonal matrix with (possibly different) learning rates of order Θ(1/t)

on the diagonal, and the “ orth←−−” operator represents an orthonormalizing step.4 The sketch is then
St = (tΛt)

1
2Vt. The rows of St are orthogonal and thus Ht is an efficiently maintainable diagonal

matrix (see Algorithm 3). We call this combination Oja-SON.

The time complexity of Oja’s algorithm is O(m2d) per round due to the orthonormalizing step. To
improve the running time to O(md), one can only update the sketch every m rounds (similar to
the block power method [16, 22]). The regret guarantee of this algorithm is unclear since existing
analysis for Oja’s algorithm is only for the stochastic setting (see e.g. [2, 22]). However, Oja-SON
provides good performance experimentally.

4 Sparse Implementation

In many applications, examples (and hence gradients) are sparse in the sense that ‖xt‖0 ≤ s for all t
and some small constant s� d. Most online first order methods enjoy a per-example running time
depending on s instead of d in such settings. Achieving the same for second order methods is more
difficult since A−1

t gt (or sketched versions) are typically dense even if gt is sparse.

We show how to implement our algorithms in sparsity-dependent time, specifically, in O(m2 +
ms) for RP-SON and FD-SON and in O(m3 + ms) for Oja-SON. We emphasize that since the
sketch would still quickly become a dense matrix even if the examples are sparse, achieving purely
sparsity-dependent time is highly non-trivial (especially for FD-SON and Oja-SON), and may be of
independent interest. Due to space limit, below we only briefly mention how to do it for Oja-SON.
Similar discussion for the other two sketches can be found in Appendix G. Note that mathematically
these updates are equivalent to the non-sparse counterparts and regret guarantees are thus unchanged.

There are two ingredients to doing this for Oja-SON: (1) The eigenvectors Vt are represented as
Vt = FtZt, where Zt ∈ Rm×d is a sparsely updatable direction (Step 3 in Algorithm 5) and
Ft ∈ Rm×m is a matrix such that FtZt is orthonormal. (2) The weightswt are split as w̄t +Z>t−1bt,
where bt ∈ Rm maintains the weights on the subspace captured by Vt−1 (same as Zt−1), and w̄t

captures the weights on the complementary subspace which are again updated sparsely.

We describe the sparse updates for w̄t and bt below with the details for Ft and Zt deferred to
Appendix H. Since St = (tΛt)

1
2Vt = (tΛt)

1
2FtZt and wt = w̄t + Z>t−1bt, we know ut+1 is

wt −
(
Id − S>t HtSt

)gt

α = w̄t − gt

α − (Zt − Zt−1)>bt︸ ︷︷ ︸
def
= ūt+1

+Z>t (bt + 1
αF
>
t (tΛtHt)FtZtgt︸ ︷︷ ︸

def
= b′t+1

) . (5)

Since Zt − Zt−1 is sparse by construction and the matrix operations defining b′t+1 scale with m,
overall the update can be done in O(m2 +ms). Using the update forwt+1 in terms of ut+1, wt+1

is equal to

ut+1 − γt(Id − S>t HtSt)xt+1 = ūt+1 − γtxt+1︸ ︷︷ ︸
def
= w̄t+1

+Z>t (b′t+1 + γtF
>
t (tΛtHt)FtZtxt+1︸ ︷︷ ︸

def
= bt+1

) . (6)

Again, it is clear that all the computations scale with s and not d, so both w̄t+1 and bt+1 require only
O(m2 +ms) time to maintain. Furthermore, the prediction w>t xt = w̄>t xt + b>t Zt−1xt can also
be computed in O(ms) time. The O(m3) in the overall complexity comes from a Gram-Schmidt
step in maintaining Ft (details in Appendix H).

The pseudocode is presented in Algorithms 4 and 5 with some details deferred to Appendix H. This
is the first sparse implementation of online eigenvector computation to the best of our knowledge.

5 Experiments

Preliminary experiments revealed that out of our three sketching options, Oja’s sketch generally has
better performance (see Appendix I). For more thorough evaluation, we implemented the sparse

4For simplicity, we assume that Vt−1 + ΓtVt−1ĝtĝ
>
t is always of full rank so that the orthonormalizing step

does not reduce the dimension of Vt.
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Algorithm 4 Sparse Sketched Online Newton with Oja’s Algorithm
Input: Parameters C, α and m.

1: Initialize ū = 0d×1 and b = 0m×1.
2: (Λ, F, Z,H)← SketchInit(α,m) (Algorithm 5).
3: for t = 1 to T do
4: Receive example xt.
5: Projection step: compute x̂ = FZxt and γ = τC(ū>xt+b>Zxt)

x>t xt−(t−1)x̂>ΛHx̂
.

Obtain w̄ = ū− γxt and b← b+ γ(t− 1)F>ΛHx̂ (Equation 6).
6: Predict label yt = w̄>xt + b>Zxt and suffer loss `t(yt).
7: Compute gradient gt = `′t(yt)xt and the to-sketch vector ĝ =

√
σt + ηtgt.

8: (Λ, F , Z, H , δ)← SketchUpdate(ĝ) (Algorithm 5).
9: Update weight: ū = w̄ − 1

αgt − (δ>b)ĝ and b← b+ 1
α tF

>ΛHFZgt (Equation 5).
10: end for

Algorithm 5 Sparse Oja’s Sketch
Internal State: t, Λ, F , Z, H and K.

SketchInit(α,m)
1: Set t = 0,Λ = 0m×m, F = K = αH = Im and Z to any m× d matrix with orthonormal rows.
2: Return (Λ, F , Z, H).

SketchUpdate(ĝ)
1: Update t← t+1. Pick a diagonal stepsize matrix Γt to update Λ← (I−Γt)Λ+Γt diag{FZĝ}2.
2: Set δ = A−1ΓtFZĝ and update K ← K + δĝ>Z> + Zĝδ> + (ĝ>ĝ)δδ>.
3: Update Z ← Z + δĝ>.
4: (L,Q) ← Decompose(F,K) (Algorithm 13), so that LQZ = FZ and QZ is orthogonal. Set
F = Q.

5: Set H ← diag
{

1
α+tΛ1,1

, · · · , 1
α+tΛm,m

}
.

6: Return (Λ, F , Z, H , δ).

version of Oja-SON in Vowpal Wabbit.5 We compare it with ADAGRAD [6, 25] on both synthetic and
real-world datasets. Each algorithm takes a stepsize parameter: 1

α serves as a stepsize for Oja-SON
and a scaling constant on the gradient matrix for ADAGRAD. We try both methods with the parameter
set to 2j for j = −3,−2, . . . , 6 and report the best results. We keep the stepsize matrix in Oja-SON
fixed as Γt = 1

t Im throughout. All methods make one online pass over data minimizing square loss.

5.1 Synthetic Datasets

To investigate Oja-SON’s performance in the setting it is really designed for, we generated a range
of synthetic ill-conditioned datasets as follows. We picked a random Gaussian matrix Z ∼ RT×d
(T = 10,000 and d = 100) and a random orthonormal basis V ∈ Rd×d. We chose a specific spectrum
λ ∈ Rd where the first d− 10 coordinates are 1 and the rest increase linearly to some fixed condition
number parameter κ. We let X = Zdiag{λ}

1
2 V > be our example matrix, and created a binary

classification problem with labels y = sign(θ>x), where θ ∈ Rd is a random vector. We generated
20 such datasets with the same Z, V and labels y but different values of κ ∈ {10, 20, . . . , 200}. Note
that if the algorithm is truly invariant, it would have the same behavior on these 20 datasets.

Fig. 1 (in Section 1) shows the final progressive error (i.e. fraction of misclassified examples after one
pass over data) for ADAGRAD and Oja-SON (with sketch size m = 0, 5, 10) as the condition number
increases. As expected, the plot confirms the performance of first order methods such as ADAGRAD
degrades when the data is ill-conditioned. The plot also shows that as the sketch size increases,
Oja-SON becomes more accurate: when m = 0 (no sketch at all), Oja-SON is vanilla gradient
descent and is worse than ADAGRAD as expected; when m = 5, the accuracy greatly improves; and
finally when m = 10, the accuracy of Oja-SON is substantially better and hardly worsens with κ.

5An open source machine learning toolkit available at http://hunch.net/~vw
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Figure 2: Oja’s algorithm’s
eigenvalue recovery error.
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Figure 3: (a) Comparison of two sketch sizes on real data,
and (b) Comparison against ADAGRAD on real data.

To further explain the effectiveness of Oja’s algorithm in identifying top eigenvalues and eigenvec-
tors, the plot in Fig. 2 shows the largest relative difference between the true and estimated top 10
eigenvalues as Oja’s algorithm sees more data. This gap drops quickly after seeing just 500 examples.

5.2 Real-world Datasets

Next we evaluated Oja-SON on 23 benchmark datasets from the UCI and LIBSVM repository (see
Appendix I for description of these datasets). Note that some datasets are very high dimensional but
very sparse (e.g. for 20news, d ≈ 102, 000 and s ≈ 94), and consequently methods with running
time quadratic (such as ONS) or even linear in dimension rather than sparsity are prohibitive.

In Fig. 3(a), we show the effect of using sketched second order information, by comparing sketch
size m = 0 and m = 10 for Oja-SON (concrete error rates in Appendix I). We observe significant
improvements in 5 datasets (acoustic, census, heart, ionosphere, letter), demonstrating the advantage
of using second order information. However, we found that Oja-SON was outperformed by ADA-
GRAD on most datasets, mostly because the diagonal adaptation of ADAGRAD greatly reduces the
condition number on these datasets. Moreover, one disadvantage of SON is that for the directions not
in the sketch, it is essentially doing vanilla gradient descent. We expect better results using diagonal
adaptation as in ADAGRAD in off-sketch directions.

To incorporate this high level idea, we performed a simple modification to Oja-SON: upon seeing
example xt, we feed D−

1
2

t xt to our algorithm instead of xt, where Dt ∈ Rd×d is the diagonal part of
the matrix

∑t−1
τ=1 gτg

>
τ .6 The intuition is that this diagonal rescaling first homogenizes the scales of

all dimensions. Any remaining ill-conditioning is further addressed by the sketching to some degree,
while the complementary subspace is no worse-off than with ADAGRAD. We believe this flexibility
in picking the right vectors to sketch is an attractive aspect of our sketching-based approach.

With this modification, Oja-SON outperforms ADAGRAD on most of the datasets even for m = 0,
as shown in Fig. 3(b) (concrete error rates in Appendix I). The improvement on ADAGRAD at
m = 0 is surprising but not impossible as the updates are not identical–our update is scale invariant
like Ross et al. [33]. However, the diagonal adaptation already greatly reduces the condition number
on all datasets except splice (see Fig. 4 in Appendix I for detailed results on this dataset), so little
improvement is seen for sketch size m = 10 over m = 0. For several datasets, we verified the
accuracy of Oja’s method in computing the top-few eigenvalues (Appendix I), so the lack of difference
between sketch sizes is due to the lack of second order information after the diagonal correction.

The average running time of our algorithm when m = 10 is about 11 times slower than ADAGRAD,
matching expectations. Overall, SON can significantly outperform baselines on ill-conditioned data,
while maintaining a practical computational complexity.

Acknowledgements This work was done when Haipeng Luo and Nicolò Cesa-Bianchi were at
Microsoft Research, New York.

6D1 is defined as 0.1× Id to avoid division by zero.
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