NIPS Proceedingsβ

Unsupervised Domain Adaptation with Residual Transfer Networks

Part of: Advances in Neural Information Processing Systems 29 (NIPS 2016)

[PDF] [BibTeX] [Supplemental] [Reviews]


Conference Event Type: Poster


The recent success of deep neural networks relies on massive amounts of labeled data. For a target task where labeled data is unavailable, domain adaptation can transfer a learner from a different source domain. In this paper, we propose a new approach to domain adaptation in deep networks that can jointly learn adaptive classifiers and transferable features from labeled data in the source domain and unlabeled data in the target domain. We relax a shared-classifier assumption made by previous methods and assume that the source classifier and target classifier differ by a residual function. We enable classifier adaptation by plugging several layers into deep network to explicitly learn the residual function with reference to the target classifier. We fuse features of multiple layers with tensor product and embed them into reproducing kernel Hilbert spaces to match distributions for feature adaptation. The adaptation can be achieved in most feed-forward models by extending them with new residual layers and loss functions, which can be trained efficiently via back-propagation. Empirical evidence shows that the new approach outperforms state of the art methods on standard domain adaptation benchmarks.