
Active Nearest-Neighbor Learning in Metric Spaces

Aryeh Kontorovich
Department of Computer Science

Ben-Gurion University of the Negev
Beer Sheva 8499000, Israel

Sivan Sabato
Department of Computer Science

Ben-Gurion University of the Negev
Beer Sheva 8499000, Israel

Ruth Urner
Max Planck Institute for Intelligent Systems

Department for Empirical Inference
Tübingen 72076, Germany

Abstract

We propose a pool-based non-parametric active learning algorithm for gen-
eral metric spaces, called MArgin Regularized Metric Active Nearest Neighbor
(MARMANN), which outputs a nearest-neighbor classifier. We give prediction
error guarantees that depend on the noisy-margin properties of the input sample,
and are competitive with those obtained by previously proposed passive learners.
We prove that the label complexity of MARMANN is significantly lower than
that of any passive learner with similar error guarantees. Our algorithm is based
on a generalized sample compression scheme and a new label-efficient active
model-selection procedure.

1 Introduction

In this paper we propose a non-parametric pool-based active learning algorithm for general metric
spaces, which outputs a nearest-neighbor classifier. The algorithm is named MArgin Regularized
Metric Active Nearest Neighbor (MARMANN). In pool-based active learning [McCallum and Nigam,
1998] a collection of random examples is provided, and the algorithm can interactively query an
oracle to label some of the examples. The goal is good prediction accuracy, while keeping the label
complexity (the number of queried labels) low. MARMANN receives a pool of unlabeled examples
in a general metric space, and outputs a variant of the nearest-neighbor classifier. The algorithm
obtains a prediction error guarantee that depends on a noisy-margin property of the input sample, and
has a provably smaller label complexity than any passive learner with a similar guarantee.

The theory of active learning has received considerable attention in the past decade [e.g., Dasgupta,
2004, Balcan et al., 2007, 2009, Hanneke, 2011, Hanneke and Yang, 2015]. Active learning has
been mostly studied in a parametric setting (that is, learning with respect to a fixed hypothesis class
with a bounded capacity). Various strategies have been analyzed for parametric classification [e.g.,
Dasgupta, 2004, Balcan et al., 2007, Gonen et al., 2013, Balcan et al., 2009, Hanneke, 2011, Awasthi
et al., 2013].An active model selection procedure has also been developed for the parametric setting
Balcan et al. [2010]. However, the number of labels used there depends quadratically on the number
of possible model classes, which is prohibitive in our non-parametric setting.

The potential benefits of active learning for non-parametric classification in metric spaces are less well
understood. The paradigm of cluster-based active learning [Dasgupta and Hsu, 2008] has been shown
to provide label savings under some distributional clusterability assumptions [Urner et al., 2013,
Kpotufe et al., 2015]. Certain active learning methods for nearest neighbor classification are known
to be Bayes consistent [Dasgupta, 2012], and an active querying rule, based solely on information in

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

the unlabeled data, has been shown to be beneficial for nearest neighbors under covariate shift [Berlind
and Urner, 2015]. Castro and Nowak [2007] analyze minimax rates for a class of distributions in
Euclidean space, characterized by decision boundary regularity and noise conditions. However, no
active non-parametric strategy for general metric spaces, with label complexity guarantees for general
distributions, has been proposed so far. Here, we provide the first such algorithm and guarantees.

The passive nearest-neighbor classifier is popular among theorists and practitioners alike [Fix and
Hodges, 1989, Cover and Hart, 1967, Stone, 1977, Kulkarni and Posner, 1995]. This paradigm is
applicable in general metric spaces, and its simplicity is an attractive feature for both implementation
and analysis. When appropriately regularized [e.g. Stone, 1977, Devroye and Györfi, 1985, von
Luxburg and Bousquet, 2004, Gottlieb et al., 2010, Kontorovich and Weiss, 2015] this type of learner
can be made Bayes consistent. Another desirable property of nearest-neighbor-based methods is
their ability to generalize at a rate that scales with the intrinsic data dimension, which can be much
lower than that of the ambient space [Kpotufe, 2011, Gottlieb et al., 2014a, 2016a, Chaudhuri and
Dasgupta, 2014]. Furthermore, margin-based regularization makes nearest neighbors ideally suited
for sample compression, which yields a compact representation, faster classification runtime, and
improved generalization performance [Gottlieb et al., 2014b, Kontorovich and Weiss, 2015]. The
resulting error guarantees can be stated in terms of the sample’s noisy-margin, which depends on the
distances between differently-labeled examples in the input sample.

Our contribution. We propose MARMANN, a non-parametric pool-based active learning algorithm
that obtains an error guarantee competitive with that of a noisy-margin-based passive learner, but
can provably use significantly fewer labels. This is the first non-parametric active learner for general
metric spaces that achieves prediction error that is competitive with passive learning for general
distributions, and provably improves label complexity.

Our approach. Previous passive learning approaches to classification using nearest-neighbor rules
under noisy-margin assumptions [Gottlieb et al., 2014b, 2016b] provide statistical guarantees using
sample compression bounds [Graepel et al., 2005]. The finite-sample guarantees depend on the
number of noisy labels relative to an optimal margin scale. A central challenge in the active setting is
performing model selection (selecting the margin scale) with a low label complexity. A key insight
that we exploit in this work is that by designing a new labeling scheme for the compression set, we
can construct the compression set and estimate its error with label-efficient procedures. We obtain
statistical guarantees for this approach using a generalized sample compression analysis. We derive a
label-efficient (as well as computationally efficient) active model-selection procedure. This procedure
finds a good scale by estimating the sample error for some scales, using a small number of active
querying rounds. Crucially, unlike cross-validation, our model-selection procedure does not require a
number of labels that depends on the worst possible scale, nor does it test many scales. This allows
our label complexity bounds to be low, and to depend only on the final scale selected by the algorithm.
Our error guarantee is a constant factor over the error guarantee of the passive learner of Gottlieb
et al. [2016b]. An approach similar to Gottlieb et al. [2016b], proposed in Gottlieb et al. [2014a], has
been shown to be Bayes consistent [Kontorovich and Weiss, 2015]. The Bayes-consistency of the
passive version of our approach is the subject of ongoing work.

Paper outline. We define the setting and notations in Section 2. In Section 3 we provide our main
result, Theorem 3.2, giving error and label complexity guarantees for MARMANN. Section 4 shows
how to set the nearest neighbor rule for a given scale, and Section 5 describes the model selection
procedure. Some of the analysis is omitted due to lack of space. The full analysis is available at
Kontorovich et al. [2016].

2 Setting and notations

We consider learning in a general metric space (X , ρ), where X is a set and ρ is the metric on X .
Our problem setting is that of classification of the instance space X into some finite label set Y .
Assume that there is some distribution D over X ×Y , and let S ∼ Dm be a labeled sample of size m,
where m is an integer. Denote the sequence of unlabeled points in S by U(S). We sometimes treat S
and U(S) as multisets, since the order is unimportant. The error of a classifier h : X → Y on D is
denoted err(h,D) := P[h(X) 6= Y], where (X,Y) ∼ D. The empirical error on a labeled sample
S instantiates to err(h, S) = 1

|S|
∑

I[h(X) 6= Y]. A passive learner receives a labeled sample Sin

as input. An active learner receives the unlabeled part of the sample Uin := U(Sin) as input, and

2

is allowed to adaptively select examples from Uin and request their label from Sin. When either
learner terminates, it outputs a classifier ĥ : X → Y , with the goal of achieving a low err(ĥ,D). An
additional goal of the active learner is to achieve a performance competitive with that of the passive
learner, while querying considerably fewer labels.

The diameter of a set A ⊆ X is defined by diam(A) := supa,a′∈A ρ(a, a′). Denote the index of the
closest point in U to x ∈ X by κ(x, U) := argmini:xi∈U ρ(x, xi). We assume here and throughout
this work that when there is more than one minimizer for ρ(x, xi), ties are broken arbitrarily (but
in a consistent fashion). For a set Z ⊆ X , denote κ(Z,U) := {κ(z, U) | z ∈ Z}. Any labeled
sample S = ((xi, yi))i∈[k] naturally induces the nearest-neighbor classifier hnnS : X → Y , via
hnnS (x) := yκ(x,U(S)).

For x ∈ X , and t > 0, denote by ball(x, t) the (closed) ball of radius t around x: ball(x, t) :=
{x′ ∈ X | ρ(x, x′) ≤ t}. The doubling dimension, the effective dimension of the metric space, which
controls generalization and runtime performance of nearest-neighbors [Kpotufe, 2011, Gottlieb et al.,
2014a], is defined as follows. Let λ = λ(X) be the smallest number such that every ball in X
can be covered by λ balls of half its radius, where all balls are centered at points of X . Formally,
λ(X) := min{λ ∈ N : ∀x ∈ X , r > 0, ∃x1, . . . , xλ ∈ X : ball(x, r) ⊆ ∪λi=1ball(xi, r/2)}.
Then the doubling dimension of X is defined by ddim(X) := log2 λ. In line with modern literature,
we work in the low-dimension, big-sample regime, where the doubling dimension is assumed to
be constant and hence sample complexity and algorithmic runtime may depend on it exponentially.
This exponential dependence is unavoidable, even under margin assumptions, as previous analysis
[Kpotufe, 2011, Gottlieb et al., 2014a] indicates.

A set A ⊆ X is t-separated if infa,a′∈A:a 6=a′ ρ(a, a′) ≥ t. For A ⊆ B ⊆ X , the set A is a
t-net of B if A is t-separated and B ⊆

⋃
a∈A ball(a, t). Constructing a minimum size t-net for

a general set B is NP-hard [Gottlieb and Krauthgamer, 2010], however efficient procedures exist
for constructing some t-net [Krauthgamer and Lee, 2004, Gottlieb et al., 2014b]. The size of
any t-net is at most 2ddim(B) times the smallest possible size (see Kontorovich et al. [2016]). In
addition, the size of any t-net is at most ddiam(B)/teddim(X)+1 [Krauthgamer and Lee, 2004].
Throughout the paper, we fix a deterministic procedure for constructing a t-net, and denote its
output for a multiset U ⊆ X by Net(U, t). Let Par(U, t) be a partition of X into regions induced
by Net(U, t), that is: for Net(U, t) = {x1, . . . , xN}, define Par(U, t) := {P1, . . . , PN}, where
Pi = {x ∈ X | κ(x,Net(U, t)) = i}. For t > 0, denote N (t) := |Net(Uin, t)|. For a labeled
multiset S ⊆ X × Y and y ∈ Y , denote Sy := {x | (x, y) ∈ S}; in particular, U(S) = ∪y∈YSy .

3 Main results

Non-parameteric binary classification admits performance guarantees that scale with the sample’s
noisy-margin [von Luxburg and Bousquet, 2004, Gottlieb et al., 2010, 2016b]. We say that a labeled
multiset S is (ν, t)-separated, for ν ∈ [0, 1] and t > 0 (representing a margin t with noise ν), if one
can remove a ν-fraction of the points in S, and in the resulting multiset, points with different labels
are at least t-far from each other. Formally, S is (ν, t)-separated if there exists a subsample S̃ ⊆ S
such that |S \ S̃| ≤ ν|S| and ∀y1 6= y2 ∈ Y, a ∈ S̃y1 , b ∈ S̃y2 , we have ρ(a, b) ≥ t. For a given
labeled sample S, denote by ν(t) the smallest value ν such that S is (ν, t)-separated. Gottlieb et al.
[2016b] propose a passive learner with the following guarantees as a function of the separation of S.
Setting α := m/(m−N), define the following form of a generalization bound:

GB(ε,N, δ,m, k) := αε+
2

3

(N + 1) log(mk) + log(1
δ)

m−N
+

3√
2

√
αε((N + 1) log(mk) + log(1

δ))

m−N
.

Theorem 3.1 (Gottlieb et al. [2016b]). Let m be an integer, Y = {0, 1}, δ ∈ (0, 1). There exists a
passive learning algorithm that returns a nearest-neighbor classifier hnnSpas

, where Spas ⊆ Sin, such
that, with probability 1− δ,

err(hnnSpas
,D) ≤ min

t>0:N (t)<m
GB(ν(t),N (t), δ,m, 1).

The passive algorithm of Gottlieb et al. [2016b] generates Spas of size approximately N (t) for
the optimal scale t > 0 (found by searching over all scales), removing the |Sin|ν(t) points that

3

obstruct the t-separation between different labels in Sin, and then selecting a subset of the remaining
labeled examples to form Spas, so that the examples are a t-net for Sin. We propose a different
approach for generating a compression set for a nearest-neighbor rule. This approach, detailed in the
following sections, does not require finding and removing all the obstructing points in Sin, and can
be implemented in an active setting using a small number of labels. The resulting active learning
algorithm, MARMANN, has an error guarantee competitive with that of the passive learner and a
label complexity that can be significantly lower. Our main result is the following guarantee for
MARMANN.
Theorem 3.2. Let Sin ∼ Dm, where m ≥ max(6, |Y|), δ ∈ (0, 14). Let Ŝ be the output of
MARMANN(Uin, δ), where Ŝ ⊆ X × Y , and let N̂ := |Ŝ|. Let ĥ := hnn

Ŝ
and ε̂ := err(ĥ, Sin), and

denote Ĝ := GB(ε̂, N̂ , δ,m, 1). With a probability of 1−δ over Sin and randomness of MARMANN,

err(ĥ,D) ≤ 2Ĝ ≤ O
(

min
t>0:N (t)<m

GB(ν(t),N (t), δ,m, 1)

)
,

and the number of labels from Sin requested by MARMANN is at most

O

(
log3(

m

δ
)

(
1

Ĝ
log(

1

Ĝ
) +mĜ

))
.

Here O(·) hides only universal numerical constants.

To observe the advantages of MARMANN over a passive learner, consider a scenario in which
the upper bound GB of Theorem 3.1, as well as the Bayes error of D, are of order Θ(1/

√
m).

Then Ĝ = Θ(1/
√
m) as well. Therefore, MARMANN obtains a prediction error guarantee of

Θ(1/
√
m), similarly to the passive learner, but it uses only Θ̃(

√
m) labels instead of m. Moreover,

no learner that selects labels randomly from Sin can compete with MARMANN: In Kontorovich
et al. [2016] we adapt an argument of Devroye et al. [1996] to show that for any passive learner
that uses Θ̃(

√
m) random labels from Sin, there exists a distribution D with the above properties,

for which the prediction error of the passive learner in this case is Ω̃(m−1/4), a decay rate which is
almost quadratically slower than the O(1/

√
m) rate achieved by MARMANN. Thus, the guarantees

of MARMANN cannot be matched by any passive learner.

MARMANN operates as follows. First, a scale t̂ > 0 is selected, by calling t̂ ← SelectScale(δ),
where SelectScale is our model selection procedure. SelectScale has access to Uin, and queries labels
from Sin as necessary. It estimates the generalization error bound GB for several different scales,
and executes a procedure similar to binary search to identify a good scale. The binary search keeps
the number of estimations (and thus requested labels) small. Crucially, our estimation procedure
is designed to prevent the search from spending a number of labels that depends on the net size
of the smallest possible scale t, so that the total label complexity of MARMANN depends only
on error of the selected t̂. Second, the selected scale t̂ is used to generate the compression set by
calling Ŝ ← GenerateNNSet(t̂, [N (t̂)], δ), where GenerateNNSet is our compression set generation
procedure. For clarity of presentation, we first introduce in Section 4 the procedure GenerateNNSet,
which determines the compression set for a given scale, and then in Section 5, we describe how
SelectScale chooses the appropriate scale.

4 Active nearest-neighbor at a given scale

The passive learner of Gottlieb et al. [2014a, 2016b] generates a compression set by first finding
and removing from Sin all points that obstruct (ν, t)-separation at a given scale t > 0. We propose
below a different approach for generating a compression set, which seems more conducive to active
learning: as we show below, it also generates a low-error nearest neighbor rule, just like the passive
approach. At the same time, it allows us to estimate the error on many different scales using few
label queries. A small technical difference, which will be evident below, is that in this new approach,
examples in the compression set might have a different label than their original label in Sin. Standard
sample compression analysis [e.g. Graepel et al., 2005] assumes that the classifier is determined by a
small number of labeled examples from Sin. This does not allow the examples in the compression set
to have a different label than their original label in Sin. Therefore, we require a slight generalization
of previous compression analysis, which allows setting arbitrary labels for examples that are assigned
to the compression set. The following theorem quantifies the effect of this change on generalization.

4

Theorem 4.1. Let m ≥ |Y| be an integer, δ ∈ (0, 14). Let Sin ∼ Dm. With probability at least 1− δ,
if there exist N < m and S ⊆ (X × Y)N such that U(S) ⊆ Uin and ε := err(hnnS , Sin) ≤ 1

2 , then
err(hnnS ,D) ≤ GB(ε,N, δ,m, |Y|) ≤ 2GB(ε,N, 2δ,m, 1).

The proof is similar to that of standard sample compression schemes. If the compression set
includes only the original labels, the compression analysis of Gottlieb et al. [2016b] gives the bound
GB(ε,N, δ,m, 1). Thus the effect of allowing the labels to change is only logarithmic in |Y|, and
does not appreciably degrade the prediction error.

We now describe the generation of the compression set for a given scale t > 0. Recall that ν(t) is
the smallest value for which Sin is (ν, t)-separated. We define two compression sets. The first one,
denoted Sa(t), represents an ideal compression set, which induces an empirical error of at most ν(t),
but calculating it might require many labels. The second compression set, denoted Ŝa(t), represents
an approximation to Sa(t), which can be constructed using a small number of labels, and induces a
sample error of at most 4ν(t) with high probability. MARMANN constructs only Ŝa(t), while Sa(t)
is defined for the sake of analysis only.

We first define the ideal set Sa(t) := {(x1, y1), . . . , (xN , yN)}. The examples in Sa(t) are the
points in Net(Uin, t/2), and the label of each example is the majority label out of the examples
in Sin to which xi is closest. Formally, {x1, . . . , xN} := Net(Uin, t/2), and for i ∈ [N], yi :=
argmaxy∈Y |Sy ∩ Pi|, where Pi = {x ∈ X | κ(x,Net(U, t/2)) = i} ∈ Par(Uin, t/2). For i ∈ [N],
let Λi := Syi ∩ Pi. The following lemma bounds the empirical error of hnnSa(t)

.

Lemma 4.2. For every t > 0, err(hnnSa(t)
, Sin) ≤ ν(t).

Proof. Since Net(Uin, t/2) is a t/2-net, diam(P) ≤ t for any P ∈ Par(Uin, t/2). Let S̃ ⊆ S

be a subsample that witnesses the (ν(t), t)-separation of S, so that |S̃| ≥ m(1 − ν(t)), and for
any two points (x, y), (x′, y′) ∈ S̃, if ρ(x, x′) ≤ t then y = y′. Denote Ũ := U(S̃). Since
maxP∈Par(Uin,t/2) diam(P) ≤ t, for any i ∈ [N] all the points in Ũ ∩ Pi must have the same label in
S̃. Therefore, ∃y ∈ Y such that Ũ ∩ Pi ⊆ S̃y ∩ Pi. Hence |Ũ ∩ Pi| ≤ |Λi|. It follows

m · err(hnnSa(t)
, Sin) ≤ |S| −

∑
i∈[N]

|Λi| ≤ |S| −
∑
i∈[N]

|Ũ ∩ Pi| = |S| − |S̃| = m · ν(t).

Dividing by m we get the statement of the theorem.

Now, calculating Sa(t) requires knowing most of the labels in Sin. MARMANN constructs instead
an approximation Ŝa(t), in which the examples are the points in Net(Uin, t/2) (so that U(Ŝa(t)) =
U(Sa(t))), but the labels are determined using a bounded number of labels requested from Sin. The
labels in Ŝa(t) are calculated by the simple procedure GenerateNNSet given in Alg. 1. The empirical
error of the output of GenerateNNSet is bounded in Theorem 4.3 below.1

A technicality in Alg. 1 requires explanation: In MARMANN, the generation of Ŝa(t) will be split
into several calls to GenerateNNSet, so that different calls determine the labels of different points in
Ŝa(t). Therefore GenerateNNSet has an additional argument I , which specifies the indices of the
points in Net(Uin, t/2) for which the labels should be returned this time. Crucially, if during the run of
MARMANN, GenerateNNSet is called again for the same scale t and the same point in Net(Uin, t/2),
then GenerateNNSet returns the same label that it returned before, rather than recalculating it using
fresh labels from Sin. This guarantees that despite the randomness in GenerateNNSet, the full
Ŝa(t) is well-defined within any single run of MARMANN, and is distributed like the output of
GenerateNNSet(t, [N (t/2)], δ), which is convenient for the analysis.

Theorem 4.3. Let Ŝa(t) be the output of GenerateNNSet(t, [N (t/2)], δ). With a probability at least
1− δ

2m2 , we have err(hnnS , Sin) ≤ 4ν(t). Denote this event by E(t).

1In the case of binary labels (|Y| = 2), the problem of estimating Sa(t) can be formulated as a special case
of the benign noise setting for parametric active learning, for which tight lower and upper bounds are provided
in Hanneke and Yang [2015]. However, our case is both more general (as we allow multiclass labels) and more
specific (as we are dealing with a specific hypothesis class). Thus we provide our own procedure and analysis.

5

Algorithm 1 GenerateNNSet(t, I, δ)

input Scale t > 0, a target set I ⊆ [N (t/2)], confidence δ ∈ (0, 1).
output A labeled set S ⊆ X × Y of size |I|
{x1, . . . , xN} ← Net(Uin, t/2), {P1, . . . , PN} ← Par(Uin, t/2), S ← ()
for i ∈ I do

if ŷi has not already been calculated for Uin with this values of t then
Draw Q :=

⌈
18 log(2m3/δ)

⌉
points uniformly at random from Pi and query their labels.

Let ŷi be the majority label observed in these Q queries.
end if
S ← S ∪ {(xi, ŷi)}.

end for
Output S

Proof. By Lemma 4.2, err(hnnSa(t)
, Sin) ≤ ν(t). In Sa(t), the labels assigned to each point in

Net(Uin, t/2) are the majority labels (based on Sin) of the points in the regions in Par(Uin, t/2).
Denote the majority label for region Pi by yi := argmaxy∈Y |Sy ∩ Pi|. We now compare these
labels to the labels ŷi assigned by Alg. 1. Let p(i) = |Λi|/|Pi| be the fraction of points in Pi which
are labeled by the majority label yi. Let p̂(i) be the fraction of labels equal to yi out of those queried
by Alg. 1 in round i. Let β := 1/6. By Hoeffding’s inequality and union bounds, we have that with a
probability of at least 1−N (t/2) exp(− Q

18) ≥ 1− δ
2m2 , we have maxi∈[N (t/2)] |p̂(i)− p(i)| ≤ β.

Denote this “good” event byE′. We now prove thatE′ ⇒ E(t). Let J ⊆ [N (t/2)] = {i | p̂(i) > 1
2}.

It can be easily seen that ŷi = yi for all i ∈ J . Therefore, for all x such that κ(x,U(Sa(t))) ∈ J ,
hnnS (x) = hnnSa(t)

(x), and hence err(hnnS , Uin) ≤ PX∼Uin
[κ(X,U(Sa(t))) /∈ J] + err(hnnSa(t)

, Uin).

The second term is at most ν(t), and it remains to bound the first term, on the condition that E′ holds.
We have PX∼U [κ(X,U(Sa(t))) /∈ J] = 1

m

∑
i/∈J |Pi|. If E′ holds, then for any i /∈ J , p(i) ≤ 1

2 +β,
therefore |Pi| − |Λi| = (1− p(i))|Pi| ≥ (1

2 − β)|Pi|. Therefore

1− 1

m

∑
i/∈J

|Λi| ≥
1

m

∑
i/∈J

|Pi|(1
2 − β) = PX∼U [κ(X,U(Sa(t))) /∈ J](1

2 − β).

On the other hand, as in the proof of Lemma 4.2, 1− 1
m

∑
i∈[N (t/2)] |Λi| ≤ ν(t). Thus, under E′,

PX∼U [κ(X,S) /∈ J] ≤ ν(t)
1
2−β

= 3ν(t). It follows that under E′, err(hnnS , Uin) ≤ 4ν(t).

5 Model Selection

We now show how to select the scale t̂ that will be used to generate the output nearest-neighbor rule.
The main challenge is to do this with a low label complexity: Generating the full classification rule
for scale t requires a number of labels that depends on N (t), which might be very large. We would
like the label complexity of MARMANN to depend only on N (t̂) (where t̂ is the selected scale),
which is of the order mĜ. Therefore, during model selection we can only invest a bounded number
of labels in each tested scale. In addition, to keep the label complexity low, we cannot test all scales.

For t > 0, let Ŝa(t) be the model that MARMANN would generate if the selected scale were set to t.
Our model selection procedure performs a search, similar to binary search, over the possible scales.
For each tested scale t, the procedure estimates ε(t) := err(hnn

Ŝa(t)
, S) within a certain accuracy, using

an estimation procedure we call EstimateErr. EstimateErr outputs an estimate ε̂(t) of ε(t), up to a
given accuracy θ > 0, using labels requested from Sin. It draws random examples from Sin, asks for
their label, and calls GenerateNNSet (which also might request labels) to find the prediction error
of hnn

Ŝa(t)
on these random examples. The estimate ε̂(t) is set to this prediction error. The number

of random examples drawn by EstimateErr is determined based on the accuracy θ, using empirical
Bernstein bounds [Maurer and Pontil, 2009]. Theorem 5.1 gives a guarantee for the accuracy and
label complexity of EstimateErr. The full implementation of EstimateErr and the proof of Theorem
5.1 can be found in the long version of this paper Kontorovich et al. [2016].

6

Theorem 5.1. Let t, θ > 0 and δ ∈ (0, 1), and let ε̂(t)← EstimateErr(t, θ, δ). Let Q be as defined
in Alg. 1. The following properties (which we denote below by V (t)) hold with a probability of
1− δ

2m2 over the randomness of EstimateErr (and conditioned on Ŝa(t)).

1. If ε̂(t) ≤ θ, then ε(t) ≤ 5θ/4. Otherwise, 4ε(t)
5 ≤ ε̂(t) ≤ 4ε(t)

3 .

2. EstimateErr requests at most
520(Q+1) log(1040m2

δψ′)

ψ′ labels, where ψ′ := max(θ, ε(t)).

The model selection procedure SelectScale, given in Alg. 2, implements its search based on the guar-
antees in Theorem 5.1. First, we introduce some notation. Let G∗ = mint GB(ν(t),N (t), δ,m, 1).
We would like MARMANN to obtain a generalization guarantee that is competitive with G∗. Denote
φ(t) := ((N (t) + 1) log(m) + log(1

δ))/m, and let G(ε, t) := ε+ 2
3φ(t) + 3√

2

√
εφ(t). Note that for

all ε, t,
GB(ε,N (t), δ,m, 1) =

m

m−N (t)
G(ε, t).

When referring to G(ν(t), t), G(ε(t), t), or G(ε̂(t), t) we omit the second t for brevity. Instead of
directly optimizing GB, we will select a scale based on our estimate G(ε̂(t)) of G(ε(t)).

Let Dist denote the set of pairwise distances in the unlabeled dataset Uin (note that |Dist| <
(
m
2

)
).

We remove from Dist some distances, so that the remaining distances have a net size N (t) that is
monotone non-increasing in t. We also remove values with a very large net size. Concretely, define

Distmon := Dist \ {t | N (t) + 1 > m/2} \ {t | ∃t′ ∈ Dist, t′ < t and N (t′) < N (t)}.

Then for all t, t′ ∈ Distmon such that t′ < t, we have N (t′) ≥ N (t). The output of SelectScale is
always a value in Distmon. The following lemma shows that it suffices to consider these scales.
Lemma 5.2. Assume m ≥ 6 and let t∗m ∈ argmint∈DistG(ν(t)). If G∗ ≤ 1/3 then t∗m ∈ Distmon.

Proof. Assume by way of contradiction that t∗m ∈ Dist \Distmon. First, since G(ν(t∗m)) ≤ G∗ ≤
1/3 we have N (t∗m)+1

m−N (t∗m) log(m) ≤ 1
2 . Therefore, since m ≥ 6, it is easy to verify N (t∗m) + 1 ≤ m/2.

Therefore, by definition of Distmon there exists a t ≤ t∗m with φ(t) < φ(t∗m). Since ν(t) is monotone
over all of t ∈ Dist, we also have ν(t) ≤ ν(t∗m). Now, φ(t) < φ(t∗m) and ν(t) ≤ ν(t∗m) together
imply that G(ν(t)) < G(ν(t∗m)), a contradiction. Hence, t∗m ∈ Distmon.

SelectScale follows a search similar to binary search, however the conditions for going right and for
going left are not complementary. The search ends when either none of these two conditions hold, or
when there is nothing left to try. The final output of the algorithm is based on minimizing G(ε̂(t))
over some of the values tested during search.

For c > 0, define γ(c) := 1 + 2
3c + 3√

2c
and γ̃(c) := 1

c + 2
3 + 3√

2c
. For all t, ε > 0 we have the

implications

ε ≥ cφ(t) ⇒ γ(c)ε ≥ G(ε, t) and φ(t) ≥ cε ⇒ γ̃(c)φ(t) ≥ G(ε, t). (1)

The following lemma uses Eq. (1) to show that the estimate G(ε̂(t)) is close to the true G(ε(t)).
Lemma 5.3. Let t > 0, δ ∈ (0, 1), and suppose that SelectScale calls ε̂(t) ←
EstimateErr(t, φ(t), δ). Suppose that V (t) as defined in Theorem 5.1 holds. Then 1

6G(ε̂(t)) ≤
G(ε(t)) ≤ 6.5G(ε̂(t)).

Proof. Under V (t), we have that if ε̂(t) < φ(t) then ε(t) ≤ 5
4φ(t). In this case, G(ε(t)) ≤

γ̃(4/5)φ(t) ≤ 4.3φ(t), by Eq. (1). Therefore G(ε(t)) ≤ 3·4.3
2 G(ε̂(t)). In addition, G(ε(t)) ≥ 2

3φ(t)

(from the definition of G), and by Eq. (1) and γ̃(1) ≤ 4, φ(t) ≥ 1
4G(ε̂(t)). Therefore G(ε(t)) ≥

1
6G(ε̂(t)). On the other hand, if ε̂(t) ≥ φ(t), then by Theorem 5.1 4

5ε(t) ≤ ε̂(t) ≤
4
3ε(t). Therefore

G(ε̂(t)) ≤ 4
3G(ε(t)) and G(ε(t)) ≤ 5

4G(ε̂(t)). Taking the worst-case of both possibilities, we get
the bounds in the lemma.

The next theorem bounds the label complexity of SelectScale. Let Ttest ⊆ Distmon be the set of
scales that are tested during SelectScale (that is, their ε̂(t) was estimated).

7

Algorithm 2 SelectScale(δ)

input δ ∈ (0, 1)
output Scale t̂
T ← Distmon, # T maintains the current set of possible scales
while T 6= ∅ do
t← the median value in T # break ties arbitrarily
ε̂(t)← EstimateErr(t, φ(t), δ).
if ε̂(t) < φ(t) then
T ← T \ [0, t] # go right in the binary search

else if ε̂(t) > 11
10φ(t) then

T ← T \ [t,∞) # go left in the binary search
else
t0 ← t, T0 ← {t0}.
break from loop

end if
end while
if T0 was not set yet then

If the algorithm ever went to the right, let t0 be the last value for which this happened, and let
T0 := {t0}. Otherwise, T0 := ∅.

end if
Let TL be the set of all t that were tested and made the search go left
Output t̂ := argmint∈TL∪T0 G(ε̂(t))

Theorem 5.4. Suppose that the event V (t) defined in Theorem 5.1 holds for all t ∈ Ttest for the calls
ε̂(t)← EstimateErr(t, φ(t), δ). If the output of SelectScale is t̂, then the number of labels requested
by SelectScale is at most

19240|Ttest|(Q+ 1)
1

G(ε(t̂))
log(

38480m2

δG(ε(t̂))
),

where Q is as defined in Alg. 1.

The following theorem provides a competitive error guarantee for the selected scale t̂.
Theorem 5.5. Suppose that V (t) and E(t), defined in Theorem 5.1 and Theorem 4.3, hold for all
values t ∈ Ttest, and that G∗ ≤ 1/3. Then SelectScale outputs t̂ ∈ Distmon such that

GB(ε(t̂),N (t̂), δ,m, 1) ≤ O(G∗),

where O(·) hides numerical constants only.

The idea of the proof is as follows: First, we show (using Lemma 5.3) that it suffices to prove that
G(ν(t∗m)) ≥ O(G(ε̂(t̂))) to derive the bound in the theorem. Now, SelectScale ends in one of two
cases: either T0 is set within the loop, or T = ∅ and T0 is set outside the loop. In the first case,
neither of the conditions for turning left and turning right holds for t0, so we have ε̂(t0) = Θ(φ(t0))
(where Θ hides numerical constants). We show that in this case, whether t∗m ≥ t0 or t∗m ≤ t0,
G(ν(t∗m)) ≥ O(G(ε̂(t0))). In the second case, there exist (except for edge cases, which are also
handled) two values t0 ∈ T0 and t1 ∈ TL such that t0 caused the binary search to go right, and t1
caused it to go left, and also t0 ≤ t1, and (t0, t1) ∩Distmon = ∅. We use these facts to show that for
t∗m ≥ t1, G(ν(t∗m)) ≥ O(G(ε̂(t1))), and for t∗m ≤ t0, G(ν(t∗m)) ≥ O(G(ε̂(t0))). Since t̂ minimizes
over a set that includes t0 and t1, this gives G(ν(t∗m)) ≥ O(G(ε̂(t̂))) in all cases.

The proof of the main theorem, Theorem 3.2, which gives the guarantee for MARMANN, is almost
immediate from Theorem 4.1, Theorem 4.3, Theorem 5.5 and Theorem 5.4.

Acknowledgements

Sivan Sabato was partially supported by the Israel Science Foundation (grant No. 555/15). Aryeh
Kontorovich was partially supported by the Israel Science Foundation (grants No. 1141/12 and
755/15) and a Yahoo Faculty award. We thank Lee-Ad Gottlieb and Dana Ron for helpful discussions.

8

References
P. Awasthi, M.-F. Balcan, and P. M. Long. The power of localization for efficiently learning linear separators

with malicious noise. CoRR, abs/1307.8371, 2013.
M. Balcan, S. Hanneke, and J. W. Vaughan. The true sample complexity of active learning. Machine Learning,

80(2-3):111–139, 2010.
M.-F. Balcan, A. Broder, and T. Zhang. Margin-based active learning. In COLT, 2007.
M.-F. Balcan, A. Beygelzimer, and J. Langford. Agnostic active learning. J. Comput. Syst. Sci., 75(1), 2009.
C. Berlind and R. Urner. Active nearest neighbors in changing environments. In ICML, pages 1870–1879, 2015.
R. M. Castro and R. D. Nowak. Learning Theory: 20th Annual Conference on Learning Theory, COLT 2007,

San Diego, CA, USA; June 13-15, 2007. Proceedings, chapter Minimax Bounds for Active Learning, pages
5–19. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

K. Chaudhuri and S. Dasgupta. Rates of convergence for nearest neighbor classification. In NIPS, 2014.
T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE Transactions on Information Theory,

13:21–27, 1967.
S. Dasgupta. Analysis of a greedy active learning strategy. In NIPS, pages 337–344, 2004.
S. Dasgupta. Consistency of nearest neighbor classification under selective sampling. In COLT, 2012.
S. Dasgupta and D. Hsu. Hierarchical sampling for active learning. In ICML, pages 208–215, 2008.
L. Devroye and L. Györfi. Nonparametric density estimation: the L1 view. Wiley Series in Probability and

Mathematical Statistics: Tracts on Probability and Statistics. John Wiley & Sons, Inc., New York, 1985.
L. Devroye, L. Györfi, and G. Lugosi. A probabilistic theory of pattern recognition, volume 31 of Applications

of Mathematics (New York). Springer-Verlag, New York, 1996. ISBN 0-387-94618-7.
E. Fix and J. Hodges, J. L. Discriminatory analysis. nonparametric discrimination: Consistency properties.

International Statistical Review / Revue Internationale de Statistique, 57(3):pp. 238–247, 1989.
A. Gonen, S. Sabato, and S. Shalev-Shwartz. Efficient active learning of halfspaces: an aggressive approach.

Journal of Machine Learning Research, 14(1):2583–2615, 2013.
L. Gottlieb and R. Krauthgamer. Proximity algorithms for nearly-doubling spaces. In APPROX-RANDOM,

pages 192–204, 2010.
L. Gottlieb, L. Kontorovich, and R. Krauthgamer. Efficient classification for metric data. In COLT, pages

433–440, 2010.
L. Gottlieb, A. Kontorovich, and R. Krauthgamer. Efficient classification for metric data. IEEE Transactions on

Information Theory, 60(9):5750–5759, 2014a.
L. Gottlieb, A. Kontorovich, and P. Nisnevitch. Near-optimal sample compression for nearest neighbors. In

NIPS, pages 370–378, 2014b.
L. Gottlieb, A. Kontorovich, and R. Krauthgamer. Adaptive metric dimensionality reduction. Theoretical

Computer Science, pages 105–118, 2016a.
L. Gottlieb, A. Kontorovich, and P. Nisnevitch. Nearly optimal classification for semimetrics. In Artificial

Intelligence and Statistics (AISTATS), 2016b.
T. Graepel, R. Herbrich, and J. Shawe-Taylor. PAC-Bayesian compression bounds on the prediction error of

learning algorithms for classification. Machine Learning, 59(1-2):55–76, 2005.
S. Hanneke. Rates of convergence in active learning. The Annals of Statistics, 39(1):333–361, 2011.
S. Hanneke and L. Yang. Minimax analysis of active learning. JMLR, 16:3487–3602, 2015.
A. Kontorovich and R. Weiss. A Bayes consistent 1-NN classifier. In AISTATS, 2015.
A. Kontorovich, S. Sabato, and R. Urner. Active nearest-neighbor learning in metric spaces. CoRR,

abs/1605.06792, 2016. URL http://arxiv.org/abs/1605.06792.
S. Kpotufe. k-NN regression adapts to local intrinsic dimension. In NIPS, 2011.
S. Kpotufe, R. Urner, and S. Ben-David. Hierarchical label queries with data-dependent partitions. In COLT,

pages 1176–1189, 2015.
R. Krauthgamer and J. R. Lee. Navigating nets: Simple algorithms for proximity search. In 15th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 791–801, Jan. 2004.
S. R. Kulkarni and S. E. Posner. Rates of convergence of nearest neighbor estimation under arbitrary sampling.

IEEE Transactions on Information Theory, 41(4):1028–1039, 1995.
A. Maurer and M. Pontil. Empirical Bernstein bounds and sample-variance penalization. In COLT, 2009.
A. K. McCallum and K. Nigam. Employing EM and pool-based active learning for text classification. In ICML,

1998.
C. J. Stone. Consistent nonparametric regression. The Annals of Statistics, 5(4):595–620, 1977.
R. Urner, S. Wulff, and S. Ben-David. PLAL: cluster-based active learning. In COLT, pages 376–397, 2013.
U. von Luxburg and O. Bousquet. Distance-based classification with Lipschitz functions. Journal of Machine

Learning Research, 5:669–695, 2004.

9

http://arxiv.org/abs/1605.06792

