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Abstract

How can we efficiently propagate uncertainty in a latent state representation with
recurrent neural networks? This paper introduces stochastic recurrent neural
networks which glue a deterministic recurrent neural network and a state space
model together to form a stochastic and sequential neural generative model. The
clear separation of deterministic and stochastic layers allows a structured variational
inference network to track the factorization of the model’s posterior distribution.
By retaining both the nonlinear recursive structure of a recurrent neural network
and averaging over the uncertainty in a latent path, like a state space model, we
improve the state of the art results on the Blizzard and TIMIT speech modeling data
sets by a large margin, while achieving comparable performances to competing
methods on polyphonic music modeling.

1 Introduction

Recurrent neural networks (RNNs) are able to represent long-term dependencies in sequential data,
by adapting and propagating a deterministic hidden (or latent) state [5, 16]. There is recent evidence
that when complex sequences such as speech and music are modeled, the performances of RNNs can
be dramatically improved when uncertainty is included in their hidden states [3, 4, 7, 11, 12, 15]. In
this paper we add a new direction to the explorer’s map of treating the hidden RNN states as uncertain
paths, by including the world of state space models (SSMs) as an RNN layer. By cleanly delineating
a SSM layer, certain independence properties of variables arise, which are beneficial for making
efficient posterior inferences. The result is a generative model for sequential data, with a matching
inference network that has its roots in variational auto-encoders (VAEs).

SSMs can be viewed as a probabilistic extension of RNNs, where the hidden states are assumed to
be random variables. Although SSMs have an illustrious history [24], their stochasticity has limited
their widespread use in the deep learning community, as inference can only be exact for two relatively
simple classes of SSMs, namely hidden Markov models and linear Gaussian models, neither of
which are well-suited to modeling long-term dependencies and complex probability distributions
over high-dimensional sequences. On the other hand, modern RNNs rely on gated nonlinearities
such as long short-term memory (LSTM) [16] cells or gated recurrent units (GRUs) [6], that let the
deterministic hidden state of the RNN act as an internal memory for the model. This internal memory
seems fundamental to capturing complex relationships in the data through a statistical model.

This paper introduces the stochastic recurrent neural network (SRNN) in Section 3. SRNNs combine
the gated activation mechanism of RNNs with the stochastic states of SSMs, and are formed by
stacking a RNN and a nonlinear SSM. The state transitions of the SSM are nonlinear and are
parameterized by a neural network that also depends on the corresponding RNN hidden state. The
SSM can therefore utilize long-term information captured by the RNN.

We use recent advances in variational inference to efficiently approximate the intractable posterior
distribution over the latent states with an inference network [19, 23]. The form of our variational
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Figure 1: Graphical models to generate x1:T with a recurrent neural network (RNN) and a state space
model (SSM). Diamond-shaped units are used for deterministic states, while circles are used for
stochastic ones. For sequence generation, like in a language model, one can use ut = xt−1.

approximation is inspired by the independence properties of the true posterior distribution over the
latent states of the model, and allows us to improve inference by conveniently using the information
coming from the whole sequence at each time step. The posterior distribution over the latent states of
the SRNN is highly non-stationary while we are learning the parameters of the model. To further
improve the variational approximation, we show that we can construct the inference network so that
it only needs to learn how to compute the mean of the variational approximation at each time step
given the mean of the predictive prior distribution.

In Section 4 we test the performances of SRNN on speech and polyphonic music modeling tasks.
SRNN improves the state of the art results on the Blizzard and TIMIT speech data sets by a large
margin, and performs comparably to competing models on polyphonic music modeling. Finally,
other models that extend RNNs by adding stochastic units will be reviewed and compared to SRNN
in Section 5.

2 Recurrent Neural Networks and State Space Models

Recurrent neural networks and state space models are widely used to model temporal sequences
of vectors x1:T = (x1,x2, . . . ,xT ) that possibly depend on inputs u1:T = (u1,u2, . . . ,uT ). Both
models rest on the assumption that the sequence x1:t of observations up to time t can be summarized
by a latent state dt or zt, which is deterministically determined (dt in a RNN) or treated as a random
variable which is averaged away (zt in a SSM). The difference in treatment of the latent state has
traditionally led to vastly different models: RNNs recursively compute dt = f(dt−1,ut) using a
parameterized nonlinear function f , like a LSTM cell or a GRU. The RNN observation probabilities
p(xt|dt) are equally modeled with nonlinear functions. SSMs, like linear Gaussian or hidden Markov
models, explicitly model uncertainty in the latent process through z1:T . Parameter inference in a
SSM requires z1:T to be averaged out, and hence p(zt|zt−1,ut) and p(xt|zt) are often restricted
to the exponential family of distributions to make many existing approximate inference algorithms
applicable. On the other hand, averaging a function over the deterministic path d1:T in a RNN is a
trivial operation. The striking similarity in factorization between these models is illustrated in Figures
1a and 1b.

Can we combine the best of both worlds, and make the stochastic state transitions of SSMs nonlinear
whilst keeping the gated activation mechanism of RNNs? Below, we show that a more expressive
model can be created by stacking a SSM on top of a RNN, and that by keeping them layered, the
functional form of the true posterior distribution over z1:T guides the design of a backward-recursive
structured variational approximation.

3 Stochastic Recurrent Neural Networks

We define a SRNN as a generative model pθ by temporally interlocking a SSM with a RNN, as
illustrated in Figure 2a. The joint probability of a single sequence and its latent states, assuming
knowledge of the starting states z0 = 0 and d0 = 0, and inputs u1:T , factorizes as
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Figure 2: A SRNN as a generative model pθ for a sequence x1:T . Posterior inference of z1:T and d1:T

is done through an inference network qφ, which uses a backward-recurrent state at to approximate
the nonlinear dependence of zt on future observations xt:T and states dt:T ; see Equation (7).

pθ(x1:T , z1:T ,d1:T |u1:T , z0,d0) = pθx(x1:T |z1:T ,d1:T ) pθz(z1:T |d1:T , z0) pθd(d1:T |u1:T ,d0)

=

T∏
t=1

pθx(xt|zt,dt) pθz(zt|zt−1,dt) pθd(dt|dt−1,ut) . (1)

The SSM and RNN are further tied with skip-connections from dt to xt. The joint density in (1) is
parameterized by θ = {θx, θz, θd}, which will be adapted together with parameters φ of a so-called
“inference network” qφ to best model N independently observed data sequences {xi1:Ti}

N
i=1 that are

described by the log marginal likelihood or evidence

L(θ) = log pθ
(
{xi1:Ti} | {u

i
1:Ti , z

i
0,d

i
0}Ni=1

)
=
∑
i

log pθ(x
i
1:Ti |u

i
1:Ti , z

i
0,d

i
0) =

∑
i

Li(θ) . (2)

Throughout the paper, we omit superscript i when only one sequence is referred to, or when it is
clear from the context. In each log likelihood term Li(θ) in (2), the latent states z1:T and d1:T

were averaged out of (1). Integrating out d1:T is done by simply substituting its deterministically
obtained value, but z1:T requires more care, and we return to it in Section 3.2. Following Figure 2a,
the states d1:T are determined from d0 and u1:T through the recursion dt = fθd(dt−1,ut). In our
implementation fθd is a GRU network with parameters θd. For later convenience we denote the value
of d1:T , as computed by application of fθd , by d̃1:T . Therefore pθd(dt|dt−1,ut) = δ(dt − d̃t), i.e.
d1:T follows a delta distribution centered at d̃1:T .

Unlike the VRNN [7], zt directly depends on zt−1, as it does in a SSM, via pθz(zt|zt−1,dt). This
split makes a clear separation between the deterministic and stochastic parts of pθ; the RNN remains
entirely deterministic and its recurrent units do not depend on noisy samples of zt, while the prior
over zt follows the Markov structure of SSMs. The split allows us to later mimic the structure of
the posterior distribution over z1:T and d1:T in its approximation qφ. We let the prior transition
distribution pθz(zt|zt−1,dt) = N (zt;µ

(p)
t ,v

(p)
t ) be a Gaussian with a diagonal covariance matrix,

whose mean and log-variance are parameterized by neural networks that depend on zt−1 and dt,

µ
(p)
t = NN

(p)
1 (zt−1,dt) , logv

(p)
t = NN

(p)
2 (zt−1,dt) , (3)

where NN denotes a neural network. Parameters θz denote all weights of NN
(p)
1 and NN

(p)
2 , which

are two-layer feed-forward networks in our implementation. Similarly, the parameters of the emission
distribution pθx(xt|zt,dt) depend on zt and dt through a similar neural network that is parameterized
by θx.

3.1 Variational inference for the SRNN

The stochastic variables z1:T of the nonlinear SSM cannot be analytically integrated out to obtain
L(θ) in (2). Instead of maximizing L with respect to θ, we maximize a variational evidence lower
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bound (ELBO) F(θ, φ) =
∑
i Fi(θ, φ) ≤ L(θ) with respect to both θ and the variational parameters

φ [17]. The ELBO is a sum of lower bounds Fi(θ, φ) ≤ Li(θ), one for each sequence i,

Fi(θ, φ) =
∫∫

qφ(z1:T ,d1:T |x1:T , A) log
pθ(x1:T , z1:T ,d1:T |A)
qφ(z1:T ,d1:T |x1:T , A)

dz1:T dd1:T , (4)

where A = {u1:T , z0,d0} is a notational shorthand. Each sequence’s approximation qφ shares
parameters φ with all others, to form the auto-encoding variational Bayes inference network or
variational auto encoder (VAE) [19, 23] shown in Figure 2b. Maximizing F(θ, φ) – which we
call “training” the neural network architecture with parameters θ and φ – is done by stochastic
gradient ascent, and in doing so, both the posterior and its approximation qφ change simultaneously.
All the intractable expectations in (4) would typically be approximated by sampling, using the
reparameterization trick [19, 23] or control variates [22] to obtain low-variance estimators of its
gradients. We use the reparameterization trick in our implementation. Iteratively maximizing F over
θ and φ separately would yield an expectation maximization-type algorithm, which has formed a
backbone of statistical modeling for many decades [8]. The tightness of the bound depends on how
well we can approximate the i = 1, . . . , N factors pθ(zi1:Ti ,d

i
1:Ti
|xi1:Ti , A

i) that constitute the true
posterior over all latent variables with their corresponding factors qφ(zi1:Ti ,d

i
1:Ti
|xi1:Ti , A

i). In what
follows, we show how qφ could be judiciously structured to match the posterior factors.

We add initial structure to qφ by noticing that the prior pθd(d1:T |u1:T ,d0) in the generative model
is a delta function over d̃1:T , and so is the posterior pθ(d1:T |x1:T ,u1:T ,d0). Consequently, we let
the inference network use exactly the same deterministic state setting d̃1:T as that of the generative
model, and we decompose it as

qφ(z1:T ,d1:T |x1:T ,u1:T , z0,d0) = qφ(z1:T |d1:T ,x1:T , z0) q(d1:T |x1:T ,u1:T ,d0)︸ ︷︷ ︸
= pθd (d1:T |u1:T ,d0)

. (5)

This choice exactly approximates one delta-function by itself, and simplifies the ELBO by letting
them cancel out. By further taking the outer average in (4), one obtains

Fi(θ, φ) = Eqφ
[
log pθ(x1:T |z1:T , d̃1:T )

]
−KL

(
qφ(z1:T |d̃1:T ,x1:T , z0)

∥∥ pθ(z1:T |d̃1:T , z0)
)
,

(6)
which still depends on θd, u1:T and d0 via d̃1:T . The first term is an expected log likelihood
under qφ(z1:T |d̃1:T ,x1:T , z0), while KL denotes the Kullback-Leibler divergence between two
distributions. Having stated the second factor in (5), we now turn our attention to parameterizing the
first factor in (5) to resemble its posterior equivalent, by exploiting the temporal structure of pθ.

3.2 Exploiting the temporal structure

The true posterior distribution of the stochastic states z1:T , given both the data and the deterministic
states d1:T , factorizes as pθ(z1:T |d1:T ,x1:T ,u1:T , z0) =

∏
t pθ(zt|zt−1,dt:T ,xt:T ). This can be

verified by considering the conditional independence properties of the graphical model in Figure 2a
using d-separation [13]. This shows that, knowing zt−1, the posterior distribution of zt does not
depend on the past outputs and deterministic states, but only on the present and future ones; this was
also noted in [20]. Instead of factorizing qφ as a mean-field approximation across time steps, we keep
the structured form of the posterior factors, including zt’s dependence on zt−1, in the variational
approximation

qφ(z1:T |d1:T ,x1:T , z0) =
∏
t

qφ(zt|zt−1,dt:T ,xt:T ) =
∏
t

qφz(zt|zt−1,at = gφa(at+1, [dt,xt])) ,

(7)
where [dt,xt] is the concatenation of the vectors dt and xt. The graphical model for the inference
network is shown in Figure 2b. Apart from the direct dependence of the posterior approximation at
time t on both dt:T and xt:T , the distribution also depends on d1:t−1 and x1:t−1 through zt−1. We
mimic each posterior factor’s nonlinear long-term dependence on dt:T and xt:T through a backward-
recurrent function gφa

, shown in (7), which we will return to in greater detail in Section 3.3. The
inference network in Figure 2b is therefore parameterized by φ = {φz, φa} and θd.

In (7) all time steps are taken into account when constructing the variational approximation at time
t; this can therefore be seen as a smoothing problem. In our experiments we also consider filtering,
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where only the information up to time t is used to define qφ(zt|zt−1,dt,xt). As the parameters φ
are shared across time steps, we can easily handle sequences of variable length in both cases.

As both the generative model and inference network factorize over time steps in (1) and (7), the
ELBO in (6) separates as a sum over the time steps

Fi(θ, φ) =
∑
t

Eq∗φ(zt−1)

[
Eqφ(zt|zt−1,d̃t:T ,xt:T )

[
log pθ(xt|zt, d̃t)

]
+

−KL
(
qφ(zt|zt−1, d̃t:T ,xt:T )

∥∥ pθ(zt|zt−1, d̃t))] , (8)

where q∗φ(zt−1) denotes the marginal distribution of zt−1 in the variational approximation to the
posterior qφ(z1:t−1|d̃1:T ,x1:T , z0), given by

q∗φ(zt−1) =

∫
qφ(z1:t−1|d̃1:T ,x1:T , z0) dz1:t−2 = Eq∗φ(zt−2)

[
qφ(zt−1|zt−2, d̃t−1:T ,xt−1:T )

]
.

(9)
We can interpret (9) as having a VAE at each time step t, with the VAE being conditioned on the past
through the stochastic variable zt−1. To compute (8), the dependence on zt−1 needs to be integrated
out, using our posterior knowledge at time t− 1 which is given by q∗φ(zt−1). We approximate the
outer expectation in (8) using a Monte Carlo estimate, as samples from q∗φ(zt−1) can be efficiently
obtained by ancestral sampling. The sequential formulation of the inference model in (7) allows
such samples to be drawn and reused, as given a sample z

(s)
t−2 from q∗φ(zt−2), a sample z

(s)
t−1 from

qφ(zt−1|z(s)t−2, d̃t−1:T ,xt−1:T ) will be distributed according to q∗φ(zt−1).

3.3 Parameterization of the inference network

The variational distribution qφ(zt|zt−1,dt:T ,xt:T ) needs to approximate the dependence of the
true posterior pθ(zt|zt−1,dt:T ,xt:T ) on dt:T and xt:T , and as alluded to in (7), this is done by
running a RNN with inputs d̃t:T and xt:T backwards in time. Specifically, we initialize the hid-
den state of the backward-recursive RNN in Figure 2b as aT+1 = 0, and recursively compute
at = gφa

(at+1, [d̃t,xt]). The function gφa
represents a recurrent neural network with, for exam-

ple, LSTM or GRU units. Each sequence’s variational approximation factorizes over time with
qφ(z1:T |d1:T ,x1:T , z0) =

∏
t qφz

(zt|zt−1,at), as shown in (7). We let qφz
(zt|zt−1,at) be a Gaus-

sian with diagonal covariance, whose mean and the log-variance are parameterized with φz as

µ
(q)
t = NN

(q)
1 (zt−1,at) , logv

(q)
t = NN

(q)
2 (zt−1,at) . (10)

Instead of smoothing, we can also do filtering by using a neural network to approximate the depen-
dence of the true posterior pθ(zt|zt−1,dt,xt) on dt and xt, through for instance at = NN(a)(dt,xt).

Improving the posterior approximation. In our experiments we found that during train-
ing, the parameterization introduced in (10) can lead to small values of the KL term
KL(qφ(zt|zt−1,at) ‖ pθ(zt|zt−1, d̃t)) in the ELBO in (8). This happens when gφ in the inference
network does not rely on the information propagated back from future outputs in at, but it is mostly
using the hidden state d̃t to imitate the behavior of the prior. The inference network could therefore
get stuck by trying to optimize the ELBO through sampling from the prior of the model, making
the variational approximation to the posterior useless. To overcome this issue, we directly include
some knowledge of the predictive prior dynamics in the parameterization of the inference network,
using our approximation of the posterior distribution q∗φ(zt−1) over the previous latent states. In the
spirit of sequential Monte Carlo methods [10], we improve the parameterization of qφ(zt|zt−1,at)
by using q∗φ(zt−1) from (9). As we are constructing the variational distribution sequentially, we
approximate the predictive prior mean, i.e. our “best guess” on the prior dynamics of zt, as

µ̂
(p)
t =

∫
NN

(p)
1 (zt−1,dt) p(zt−1|x1:T ) dzt−1 ≈

∫
NN

(p)
1 (zt−1,dt) q

∗
φ(zt−1) dzt−1 , (11)

where we used the parameterization of the prior distribution in (3). We estimate the integral required
to compute µ̂

(p)
t by reusing the samples that were needed for the Monte Carlo estimate of the ELBO
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in (8). This predictive prior mean can then be used in the parameterization of the mean of the
variational approximation qφ(zt|zt−1,at),

µ
(q)
t = µ̂

(p)
t +NN

(q)
1 (zt−1,at) , (12)

Algorithm 1 Inference of SRNN with
Resq parameterization from (12).

1: inputs: d̃1:T and a1:T
2: initialize z0
3: for t = 1 to T do
4: µ̂

(p)
t = NN

(p)
1 (zt−1, d̃t)

5: µ
(q)
t = µ̂

(p)
t +NN

(q)
1 (zt−1,at)

6: logv
(q)
t = NN

(q)
2 (zt−1,at)

7: zt ∼ N (zt;µ
(q)
t ,v

(q)
t )

8: end for

and we refer to this parameterization as Resq in the results
in Section 4. Rather than directly learning µ

(q)
t , we learn

the residual between µ̂
(p)
t and µ

(q)
t . It is straightforward

to show that with this parameterization the KL-term in
(8) will not depend on µ̂

(p)
t , but only on NN

(q)
1 (zt−1,at).

Learning the residual improves inference, making it seem-
ingly easier for the inference network to track changes
in the generative model while the model is trained, as it
will only have to learn how to “correct” the predictive
prior dynamics by using the information coming from
d̃t:T and xt:T . We did not see any improvement in results
by parameterizing logv

(q)
t in a similar way. The inference

procedure of SRNN with Resq parameterization for one sequence is summarized in Algorithm 1.

4 Results

In this section the SRNN is evaluated on the modeling of speech and polyphonic music data, as they
have shown to be difficult to model without a good representation of the uncertainty in the latent
states [3, 7, 11, 12, 15]. We test SRNN on the Blizzard [18] and TIMIT raw audio data sets (Table 1)
used in [7]. The preprocessing of the data sets and the testing performance measures are identical
to those reported in [7]. Blizzard is a dataset of 300 hours of English, spoken by a single female
speaker. TIMIT is a dataset of 6300 English sentences read by 630 speakers. As done in [7], for
Blizzard we report the average log-likelihood for half-second sequences and for TIMIT we report
the average log likelihood per sequence for the test set sequences. Note that the sequences in the
TIMIT test set are on average 3.1s long, and therefore 6 times longer than those in Blizzard. For
the raw audio datasets we use a fully factorized Gaussian output distribution. Additionally, we test
SRNN for modeling sequences of polyphonic music (Table 2), using the four data sets of MIDI
songs introduced in [4]. Each data set contains more than 7 hours of polyphonic music of varying
complexity: folk tunes (Nottingham data set), the four-part chorales by J. S. Bach (JSB chorales),
orchestral music (MuseData) and classical piano music (Piano-midi.de). For polyphonic music we
use a Bernoulli output distribution to model the binary sequences of piano notes. In our experiments
we set ut = xt−1, but ut could also be used to represent additional input information to the model.

All models where implemented using Theano [2], Lasagne [9] and Parmesan1. Training using a
NVIDIA Titan X GPU took around 1.5 hours for TIMIT, 18 hours for Blizzard, less than 15 minutes
for the JSB chorales and Piano-midi.de data sets, and around 30 minutes for the Nottingham and
MuseData data sets. To reduce the computational requirements we use only 1 sample to approximate
all the intractable expectations in the ELBO (notice that the KL term can be computed analytically).
Further implementation and experimental details can be found in the Supplementary Material.

Blizzard and TIMIT. Table 1 compares the average log-likelihood per test sequence of SRNN to
the results from [7]. For RNNs and VRNNs the authors of [7] test two different output distributions,
namely a Gaussian distribution (Gauss) and a Gaussian Mixture Model (GMM). VRNN-I differs
from the VRNN in that the prior over the latent variables is independent across time steps, and it is
therefore similar to STORN [3]. For SRNN we compare the smoothing and filtering performance
(denoted as smooth and filt in Table 1), both with the residual term from (12) and without it (10)
(denoted as Resq if present). We prefer to only report the more conservative evidence lower bound
for SRNN, as the approximation of the log-likelihood using standard importance sampling is known
to be difficult to compute accurately in the sequential setting [10]. We see from Table 1 that SRNN
outperforms all the competing methods for speech modeling. As the test sequences in TIMIT are
on average more than 6 times longer than the ones for Blizzard, the results obtained with SRNN for

1github.com/casperkaae/parmesan. The code for SRNN is available at github.com/marcofraccaro/srnn.
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Models Blizzard TIMIT
SRNN

(smooth+Resq) ≥11991 ≥ 60550
SRNN (smooth) ≥ 10991 ≥ 59269

SRNN (filt+Resq) ≥ 10572 ≥ 52126
SRNN (filt) ≥ 10846 ≥ 50524

VRNN-GMM ≥ 9107 ≥ 28982
≈ 9392 ≈ 29604

VRNN-Gauss ≥ 9223 ≥ 28805
≈ 9516 ≈ 30235

VRNN-I-Gauss ≥ 8933 ≥ 28340
≈ 9188 ≈ 29639

RNN-GMM 7413 26643
RNN-Gauss 3539 -1900

Table 1: Average log-likelihood per sequence
on the test sets. For TIMIT the average test set
length is 3.1s, while the Blizzard sequences
are all 0.5s long. The non-SRNN results are
reported as in [7]. Smooth: gφa

is a GRU run-
ning backwards; filt: gφa

is a feed-forward
network; Resq: parameterization with resid-
ual in (12).

Figure 3: Visualization of the average KL term and
reconstructions of the output mean and log-variance
for two examples from the Blizzard test set.

Models Nottingham JSB chorales MuseData Piano-midi.de
SRNN (smooth+Resq) ≥ −2.94 ≥ −4.74 ≥ −6.28 ≥ −8.20

TSBN ≥ −3.67 ≥ −7.48 ≥ −6.81 ≥ −7.98
NASMC ≈ −2.72 ≈ −3.99 ≈ −6.89 ≈ −7.61
STORN ≈ −2.85 ≈ −6.91 ≈ −6.16 ≈ −7.13

RNN-NADE ≈ −2.31 ≈ −5.19 ≈ −5.60 ≈ −7.05
RNN ≈ −4.46 ≈ −8.71 ≈ −8.13 ≈ −8.37

Table 2: Average log-likelihood on the test sets. The TSBN results are from [12], NASMC from [15],
STORN from [3], RNN-NADE and RNN from [4].

TIMIT are in line with those obtained for Blizzard. The VRNN, which performs well when the voice
of the single speaker from Blizzard is modeled, seems to encounter difficulties when modeling the
630 speakers in the TIMIT data set. As expected, for SRNN the variational approximation that is
obtained when future information is also used (smoothing) is better than the one obtained by filtering.
Learning the residual between the prior mean and the mean of the variational approximation, given in
(12), further improves the performance in 3 out of 4 cases.

In the first two lines of Figure 3 we plot two raw signals from the Blizzard test set and the average
KL term between the variational approximation and the prior distribution. We see that the KL
term increases whenever there is a transition in the raw audio signal, meaning that the inference
network is using the information coming from the output symbols to improve inference. Finally, the
reconstructions of the output mean and log-variance in the last two lines of Figure 3 look consistent
with the original signal.

Polyphonic music. Table 2 compares the average log-likelihood on the test sets obtained with
SRNN and the models introduced in [3, 4, 12, 15]. As done for the speech data, we prefer to report the
more conservative estimate of the ELBO in Table 2, rather than approximating the log-likelihood with
importance sampling as some of the other methods do. We see that SRNN performs comparably to
other state of the art methods in all four data sets. We report the results using smoothing and learning
the residual between the mean of the predictive prior and the mean of the variational approximation,
but the performances using filtering and directly learning the mean of the variational approximation
are now similar. We believe that this is due to the small amount of data and the fact that modeling
MIDI music is much simpler than modeling raw speech signals.
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5 Related work

A number of works have extended RNNs with stochastic units to model motion capture, speech
and music data [3, 7, 11, 12, 15]. The performances of these models are highly dependent on how
the dependence among stochastic units is modeled over time, on the type of interaction between
stochastic units and deterministic ones, and on the procedure that is used to evaluate the typically
intractable log likelihood. Figure 4 highlights how SRNN differs from some of these works.

In STORN [3] (Figure 4a) and DRAW [14] the stochastic units at each time step have an isotropic
Gaussian prior and are independent between time steps. The stochastic units are used as an input
to the deterministic units in a RNN. As in our work, the reparameterization trick [19, 23] is used to
optimize an ELBO.

dtdt−1

xt

ut

zt

(a) STORN

zt−1

dtdt−1

zt

xt

ut

(b) VRNN

zt−1 zt

xt

ut

(c) Deep Kalman Filter

Figure 4: Generative models of x1:T that are related to SRNN.
For sequence modeling it is typical to set ut = xt−1.

The authors of the VRNN [7] (Figure
4b) note that it is beneficial to add
information coming from the past
states to the prior over latent vari-
ables zt. The VRNN lets the prior
pθz(zt|dt) over the stochastic units
depend on the deterministic units dt,
which in turn depend on both the de-
terministic and the stochastic units at
the previous time step through the
recursion dt = f(dt−1, zt−1,ut).
The SRNN differs by clearly separat-
ing the deterministic and stochastic
part, as shown in Figure 2a. The sepa-
ration of deterministic and stochastic

units allows us to improve the posterior approximation by doing smoothing, as the stochastic units
still depend on each other when we condition on d1:T . In the VRNN, on the other hand, the stochastic
units are conditionally independent given the states d1:T . Because the inference and generative
networks in the VRNN share the deterministic units, the variational approximation would not improve
by making it dependent on the future through at, when calculated with a backward GRU, as we
do in our model. Unlike STORN, DRAW and VRNN, the SRNN separates the “noisy” stochastic
units from the deterministic ones, forming an entire layer of interconnected stochastic units. We
found in practice that this gave better performance and was easier to train. The works by [1, 20]
(Figure 4c) show that it is possible to improve inference in SSMs by using ideas from VAEs, similar
to what is done in the stochastic part (the top layer) of SRNN. Towards the periphery of related
works, [15] approximates the log likelihood of a SSM with sequential Monte Carlo, by learning
flexible proposal distributions parameterized by deep networks, while [12] uses a recurrent model
with discrete stochastic units that is optimized using the NVIL algorithm [21].

6 Conclusion

This work has shown how to extend the modeling capabilities of recurrent neural networks by
combining them with nonlinear state space models. Inspired by the independence properties of the
intractable true posterior distribution over the latent states, we designed an inference network in a
principled way. The variational approximation for the stochastic layer was improved by using the
information coming from the whole sequence and by using the Resq parameterization to help the
inference network to track the non-stationary posterior. SRNN achieves state of the art performances
on the Blizzard and TIMIT speech data set, and performs comparably to competing methods for
polyphonic music modeling.
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