## Optimal Linear Estimation under Unknown Nonlinear Transform

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

[PDF] [BibTeX] [Supplemental] [Reviews]A note about reviews:"heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

### Authors

### Conference Event Type: Poster

### Abstract

Linear regression studies the problem of estimating a model parameter $\beta^* \in \R^p$, from $n$ observations $\{(y_i,x_i)\}_{i=1}^n$ from linear model $y_i = \langle \x_i,\beta^* \rangle + \epsilon_i$. We consider a significant generalization in which the relationship between $\langle x_i,\beta^* \rangle$ and $y_i$ is noisy, quantized to a single bit, potentially nonlinear, noninvertible, as well as unknown. This model is known as the single-index model in statistics, and, among other things, it represents a significant generalization of one-bit compressed sensing. We propose a novel spectral-based estimation procedure and show that we can recover $\beta^*$ in settings (i.e., classes of link function $f$) where previous algorithms fail. In general, our algorithm requires only very mild restrictions on the (unknown) functional relationship between $y_i$ and $\langle x_i,\beta^* \rangle$. We also consider the high dimensional setting where $\beta^*$ is sparse, and introduce a two-stage nonconvex framework that addresses estimation challenges in high dimensional regimes where $p \gg n$. For a broad class of link functions between $\langle x_i,\beta^* \rangle$ and $y_i$, we establish minimax lower bounds that demonstrate the optimality of our estimators in both the classical and high dimensional regimes.