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ABSTRACT 

THE HOPFIELD MODEL WITH MUL TI-LEVEL NEURONS 

Michael Fleisher 
Department of Electrical Engineering 

Technion - Israel Institute of Technology 
Haifa 32000, Israel 

The Hopfield neural network. model for associative memory is generalized. The generalization 

replaces two state neurons by neurons taking a richer set of values. Two classes of neuron input output 

relations are developed guaranteeing convergence to stable states. The first is a class of "continuous" rela-

tions and the second is a class of allowed quantization rules for the neurons. The information capacity for 

networks from the second class is fOWld to be of order N 3 bits for a network with N neurons. 

A generalization of the sum of outer products learning rule is developed and investigated as well. 
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I. INTRODUCTION 

The ability to perfonn collective computation in a distributed system of flexible structure without 

global synchronization is an important engineering objective. Hopfield's neural network [1] is such a 

model of associative content addressable memory. 

An important property of the Hopfield neural network is its guaranteed convergence to stable states 

(interpreted as the stored memories). In this work we introduce a generalization of the Hopfield model by 

allowing the outputs of the neurons to take a richer set of values than Hopfield's original binary neurons. 

Sufficient conditions for preserving the convergence property are developed for the neuron input output 

relations. Two classes of relations are obtained. The first introduces neurons which simulate multi thres-

hold functions, networks with such neurons will be called quantized neural networks (Q.N.N.). The second 

class introduces continuous neuron input output relations and networks with such neurons will be called 

continuous neural networks (C.N.N.). 

In Section II, we introduce Hopfield's neural network and show its convergence property. C.N.N. 

are introduced in Section m and a sufficient condition for the neuron input output continuous relations is 

developed for preserving convergence. In Section IV, Q.N.N. are introduced and their input output rela­

tions are analyzed in the same manner as in III. In Section IV we look further at Q.N.N. by using the 

definition of information capacity for neural networks of [2] to obtain a tight asymptotic estimate of the 

capacity for a Q.N.N. with N neurons. Section VI is a generalized sum of outer products learning for the 

Q.N.N. and section VII is the discussion. 

n. THE HOPFIELD NEURAL NETWORK 

A neural network consists of N pairwise connected neurons. The i 'th neuron can be in one of two 

states: Xi = -lor Xi = + 1. The connections are fixed real numbers denoted by W ij (the connection 

from neuron i to nelD'On j ). Defme the state vector X to be a binary vector whose i 'th component 

corresponds to the state of the i 'th neuron. Randomly and asynchronously, each neuron examines its input 

and decides its next output in the following manner. Let ti be the threshold voltage of the i 'th neuron. If 

the weighted sum of the present other N -1 neuron outputs (which compose the i 'th neuron input) is 
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greater or equal to ti' the next Xi (xt) is+l. ifnot.Xt is -1. This action is given in (1). 

N 
X·+ = sgn [ ~ W··X ·-t· ] I Li IJ J I (1) 

j=1 

We give the following theorem 

Theorem 1 (of (1)) 

The network described with symmetric (Wij=Wji ) zero diagonal (Wi;=<» connection matrix W 

has the convergence property. 

Defme the quantity 

1 N N N 
E(X) =- - ~ ~ W··X·X· + ~ t·X· - 2 Li Li IJ I J Li I I 

i j=1 i=1 
(2) 

We show that E (X) caD only decrease as a result of the action of the network. Suppose that Xk changed 

to X t = Xl +Mk • the resulting change in E is given by 

N 
tJ.E = -llXk ( 1: WkjXj-tk) 

j=1 
(3) 

(Eq. (3) is correct because of the restrictions on W). The term in brackets is exactly the argument of the 

sgn function in (1) and therefore the signs of IlXk and the term in brackets is the same (or IlXk =<» and 

we get!lE ~ O. Combining this with the fact that E (X) is bounded shows that eventually the network 

will remain in a local minimum of E (X). TlUs cornpJetcs the proof. 

The technique used in the proof of Theorem 1 is an important tool in analyzing neural networks. A 

network with a particular underlying E (X) function can be used to solve optimization problems with 

E (K) as the object of optimization. Thus we see another use of neural networks. 
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m. THE C.N.N. 

We ask ourselves the following question: How can we change the sgn function in (1) without affecl­

ing the convergence property? The new action rule for the i 'th neuron is 

N 
X·+=/·[ ~ W··X· ] , 1 kI IJ J 

j=l 
(4) 

Our attention is focused on possible choices for Ii ('). The following theorem gives a part of the answer. 

Theorem 2 

The network described by (4) (with symmetric zero diagonal W) has the convergence property if 

Ii ( . ) are strictly increasing and bounded. 

Define 

(5) 

We show as before that E ex) can only decrease and since E is bounded (because of the boundedness of 

Ii's) the theorem is proved. 

Xj 

Usinggi(Xi ) = J li-l(u)dU we have 
o 

Using the intel111ediate value theorem we gel 

(6) 
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where C is a point between Xk and Xk +LlXk . Now, if Mk > 0 we have 

C S; Xk+LlXk = > Ik-I(C) S;fk-1(Xk+Mk ) and the term in brackets is greater or equal to zero 

=> IlE SO. A similar argument holds for Mk < 0 (of course Mk =0 => llE =0). This comp~etes 

the proof. 

Some remarks: 

(a) Strictly increasing bounded neuron relations are not the whole class of relations conserving the conver-

gence property. This is seen immediately from the fact that Hopfield's original model (1) is not in this 

class. 

(b) The E (X) in the C.N.N. coincides with Hopfield's continuous neural network [3]. The difference 

between the two networks lies in the updating scheme. In our C.N.N. the neurons update their outputs at 

the moments they examine their inputs while in [3] the updating is in the form of a set of differential equa­

tions featuring the time evolution of the network outputs. 

(c) The boundedness requirement of the neuron relations results from the boundedness of E (K). It is 

possible to impose further restrictions on W resulting in unbounded neuron relations but keeping E (X) 

bounded (from below). This was done in [4] where the neurons exhibit linear relations. 

IV. THE Q.N.N. 

We develop the class of quantization rules for the neurons, keeping the convergence property. 

Denote the set of possible neuron outputs by Yo < Y 1 < ... < Y n and the set of threshold values by 

t 1 < t 2 < ... < t n the action of the neurons is given by 

N xt = Y/ if t/ < L W;jXj ~ tl+l I=O, ... ,n 
j=1 

The following theorem gives a class of quantization rules with the convergence property. 

(8) 
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Theorem 3 

An.y quantization rule for the neurons which is an increasing step functioo that is 

Yo<Y < . .. y ,t < ... <t 1 n' 1 n (9) 

Yields a network with the convergence property (with a W symmetric and zero diagonal). 

We proceed to prove. 

Define 

(10) 

where G (X) is a piecewise linear convex U function defined by the relation 

(11) 

As before we show M ~ O. Suppose a change occurred in Xk such thatXk =Yi - 1.Xt=yi . We then 

have 

(12) 

A similar argument follows when Xk =Yi ,Xk+=Yi - 1 < Xk . Any bigger change in Xk (from Yi to Yj 

with I i - j I > 1) yields the same result since it can be viewed as a sequence of I i - j I changes from Y i 

to Yj each resulting in M ~O. The proof is completed by noting that LlX'e=O=>M =0 and E (X) is 

bounded. 
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CorollaIy 

Hopfield's original model is a special case of (9). 

V. INFORMATION CAPACITY OF THE Q.N.N. 

We use the definition of [2] for the information capacity of the Q.N.N. 

Definition 1 

The information capacity of the Q.N.N. (bits) is the log (Base 2) of the number of distinguishable 

networks of N neurons. Two networks are distinguishable if observing the state transitions of the neurons 

yields different observations. For Hopfield's original model it was shown in [2] that the capacity C of a 

network of N neurons is bounded by C ~ log (2(N-l)2f = O(N 3)b. It was also shown that 

C ~ Q(N 3)b and thus is exactly of the order N 3b. It is obvious that in our case (which contains the 

original model) we must have C ~ Q(N3)b as well (since the lower bound cannot decrease in this 

richer case). It is shown in the Appendix that the number of multi threshold functions of N -1 variables 

with n+l oUlput levels is at most (n+lf2+N+1 since we have N neurons there will be 

( (n+lf2+N+1f distinguishablenetworlcs and thus 

(14) 

01 as before, C is exactly of O(N 3)b. In fact, the rise in C is probably a faclOr of O(log2n) as can be 

seen from the upper bound. 

VI. "OUTER PRODUCT" LEARNING RULE 

For Hopfleld's origiDal network with two state neurons (taking the values ±1) a nalw-al and exten­

sively investigated r l.t 1.£ ] learning rule is the so called sum of outer products construction. 

1 K 1 1 
W .. =- ~ X·X· 

1) N ~ 1 ) 
1=1 

(15) 

where Xl, ... , X K are the desired stable states of the network. A well-known result for (15) is that the 

asymplOtic capacity K of the network is 



K= N-l +1 
410gN 
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(16) 

In this section we introduce a natural generalization of (15) and prove a similar result for the asymp-

totic capacity. We first limit the possible quantization rules to: 

with Y < ... < Y o n 

with 

t.=~(y.+y. IJ 
J 2 J J-

(a) n+l is even 
(b) V i Yi -:# 0 

(c) y. =-y . 
I n-l 

j=l, ... n 

i=O, ... ,n 

(17) 

N eAt we state that the desired stable vectors Xl, . . . X K are such that each component is picked 

independently at random from ( Yo ' . . . Y M } with equal probability. Thus. the K • N components of 

the X 's are zero mean i.i.D random variables. Our modified learning rule is 

w .. = -L ~ X!. [_1 ] 
IJ N ~ I Xl 

1=1 j 
(18) 

Note that for Xi E (+1, -I} (18) is identical to (16). 

Define 
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;~~ IYi -Yjl 
l¢oJ 

IY.12 
A = max l 

iJ IYj I 

We state that 

PROPOsmON: 

The asymptotic capacity of the above network is given by 

N K=-----
16A 2 logN 

,.., 
(6y)2 

PROOF: 

Def"me 

{ K vectors chosen randomly as deSCribed} 
P (K , N) = P r are stable states with the W of ( ) 

(19) 

(20) 

where Aij is the event that the i th component of j th vector is in error. We concentrate on the event All 

W.L.G. 

The input u 1 when X' is presented is given by 

(21) 

The first term is mapped by (17) into itself and corresponds to the desired Signal. 

The last term is a sum of (K -1 )(N -1) i.i.D zero mean random variables and corresponds to 

noise. 
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K-l 1 K-l 
The middle term -N X 1 is disposed of by assuming -N ~ O. (With a zero diagonal 

N -+00 

choice of W (using (18) with i *' j) this term does not appear). 

P r (A 11) = P r { noise gets us out of range } 
Denoting the noise by I we have 

(K -1)(N-l)4A 2 

(22) 

where the first inequality is from the defmition of .1Yand the second uses the lemma of [6] p. 58. We thus 

get 

,.., 
(,1Y)2N 2 

P (K , N) ~ 1 - K • N . 2exp - -~---'---~ 
8(K -l)(N-l)A 2 

(23) 

substituting (19) and taking N ~ 00 we get P (K , N) ~ 1 and this completes the proof. 

Vll. DISCUSSION 

Two classes of generalization of the Hopfield neural network model were presented. We give some 

remarks: 

(a) Any combination of neurons from the two classes will have the convergence property as well. 

(b) Our defmition of the information capacity for the eN.N. is useless since a full observation of the pos· 

sible state transitions of the netwock is impossible. 
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APPENDIX 

We prove the following theorem. 

Theorem 

An upper bound on the �n�u�m�~� of multi threshold functions with N inputs and M points in the 

domain (out of(n+l)N possible points) et/ is the solution of the recurrence relation 

eM - CM - 1 + n ·CM - 1 
N - N N-l (A.I) 

Let us look on the N dimensional weight space W. Each input point X divides the weight space 

N 
into n+l regions by n parallel hyperplanes L W;X;=tk k=l, ... ,n. We keep adding points in such 

;=1 

a way that the new n hypeq>1anes corresponding to each added point partition the W space into as many 

regions as possible. Assume M -1 points have made e t! -I regions and we add the M 'lh point. Each 

hyperplane (out of n) is divided into at most Cf/_l1 region, (being itself an N -1 dimensional space 

divided by (M -1)n hyperlines). We thus have after passing the n hyperplanes: 

eM - CM - I + n ·CA1- 1 
N - N N-I 

N-l[ M-1] 
is e tI = (n + 1).L i n i and the theorem is proved . 

• =0 

The solution of the recurrence in the case M =(n + I f (all possible points) we have a bound on 

the number of multi threshold functions of N variables equal to 

and the result used is established. 




