
Fast Distributed k-Center Clustering with Outliers on
Massive Data

Gustavo Malkomes, Matt J. Kusner, Wenlin Chen
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, MO 63130

{luizgustavo,mkusner,wenlinchen}@wustl.edu

Kilian Q. Weinberger
Department of Computer Science

Cornell University
Ithaca, NY 14850

kqw4@cornell.edu

Benjamin Moseley
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, MO 63130

bmoseley@wustl.edu

Abstract

Clustering large data is a fundamental problem with a vast number of applications.
Due to the increasing size of data, practitioners interested in clustering have turned
to distributed computation methods. In this work, we consider the widely used k-
center clustering problem and its variant used to handle noisy data, k-center with
outliers. In the noise-free setting we demonstrate how a previously-proposed dis-
tributed method is actually an O(1)-approximation algorithm, which accurately
explains its strong empirical performance. Additionally, in the noisy setting, we
develop a novel distributed algorithm that is also an O(1)-approximation. These
algorithms are highly parallel and lend themselves to virtually any distributed
computing framework. We compare each empirically against the best known se-
quential clustering methods and show that both distributed algorithms are con-
sistently close to their sequential versions. The algorithms are all one can hope
for in distributed settings: they are fast, memory efficient and they match their
sequential counterparts.

1 Introduction

Clustering is a fundamental machine learning problem with widespread applications. Example ap-
plications include grouping documents or webpages by their similarity for search engines [30] or
grouping web users by their demographics for targeted advertising [2]. In a clustering problem one
is given as input a set U of n data points, characterized by a set of features, and is asked to cluster
(partition) points so that points in a cluster are similar by some measure. Clustering is a well un-
derstood task on modestly sized data sets; however, today practitioners seek to cluster datasets of
massive size. Once data becomes too voluminous, sequential algorithms become ineffective due to
their running time and insufficient memory to store the data. Practitioners have turned to distributed
methods, in particular MapReduce [13], to efficiently process massive data sets.

One of the most fundamental clustering problems is the k-center problem. Here, it is assumed
that for any two input points a pair-wise distance can be computed that reflects their dissimilarity
(typically these arise from a metric space). The objective is to choose a subset of k points (called
centers) that give rise to a clustering of the input set into k clusters. Each input point is assigned to
the cluster defined by its closest center (out of the k center points). The k-center objective selects
these centers to minimize the farthest distance of any point to its cluster center.
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The k-center problem has been studied for over three decades and is a fundamental task used for
exemplar based clustering [22]. It is known to be NP-Hard and, further, no algorithm can achieve
a (2− ε)-approximation for any ε > 0 unless P=NP [16, 20]. In the sequential setting, there are
algorithms which match this bound achieving a 2-approximation [16, 20].

The k-center problem is popular for clustering datasets which are not subject to noise since the
objective is sensitive to error in the data because the worst case (maximum) distance of a point to
the centers is used for the objective. In the case where data can be noisy [1, 18, 19], previous work
has considered the k-centers with outliers problem [10]. In this problem, the objective is the same,
but additionally one may discard a set of z points from the input. These z points are the outliers and
are ignored in the objective. Here, the best known algorithm is a 3-approximation [10].

Once datasets become large, the known algorithms for these two problems become ineffective. Due
to this, previous work on clustering has resorted to alternative algorithmics. There have been several
works on streaming algorithms [3, 17, 24, 26]. Others have focused on distributed computing [6,
7, 14, 25]. The work in the distributed setting has focused on algorithms which are implementable
in MapReduce, but are also inherently parallel and work in virtually any distributed computing
framework. The work of [14] was the first to consider k-center clustering in the distributed setting.
Their work gave an O(1)-round O(1)-approximate MapReduce algorithm. Their algorithm is a
sampling based MapReduce algorithm which can be used for a variety of clustering objectives.
Unfortunately, as the authors point out in their paper, the algorithm does not always perform well
empirically for the k-center objective since the objective function is very sensitive to missing data
points and the sampling can cause large errors in the solution.

The work of Kumar et al. [23] gave a (1− 1
e )-approximation algorithm for submodular function

maximization subject to a cardinality constraint in the MapReduce setting, however, their algorithm
requires a non-constant number of MapReduce rounds. Whereas, Mirzasoleiman et al. [25] (re-
cently, extended in [8]) gave a two MapReduce rounds algorithm but their approximation ratio is not
constant. It is known that an exact algorithm for submodular maximization subject to a cardinality
constraint gives an exact algorithm for the k-center problem. Unfortunately, both problems are NP-
Hard and the reduction is not approximation preserving. Therefore, their theoretical results do not
imply a nontrivial approximation for the k-center problem.

For these problems, the following questions loom: What can be achieved for k-center clustering
with or without outliers in the large-scale distributed setting? What underlying algorithmic ideas are
needed for the k-center with outliers problem to be solved in the distributed setting? The k-center
with outliers problem has not been studied in the distributed setting. Given the complexity of the
sequential algorithm, it is not clear what such an algorithm would look like.

Contributions. In this work, we consider the k-center and k-center with outliers problems in the
distributed computing setting. Although the algorithms are highly parallel and work in virtually
any distributed computing framework, they are particularly well suited for the MapReduce [13]
as they require only small amounts of inter-machine communication and very little memory on
each machine. We therefore state our results for the MapReduce framework [13]. We will assume
throughout the paper that our algorithm is given some number of machines, m, to process the data.
We first begin by considering a natural interpretation of the algorithm of Mirzasoleiman et al. [25]
on submodular optimization for the k-center problem. The algorithm we introduce runs in two
MapReduce rounds and achieves a small constant approximation.

Theorem 1.1. There is a two round MapReduce algorithm which achieves a 4-approximation for
the k-center problem which communicates O(km) amount of data assuming the data is already
partitioned across the machines. The algorithm usesO(max{n/m,mk}) memory on each machine.

Next we consider the k-center with outliers problem. This problem is far more challenging and pre-
vious distributed techniques do not lend themselves to this problem. Here we combine the algorithm
developed for the problem without outliers with the sequential algorithm for k-center with outliers.
We show a two round MapReduce algorithm that achieves an O(1)-approximation.

Theorem 1.2. There is a two round MapReduce algorithm which achieves a 13-approximation for
the k-center with outliers problem which communicates O(km log n) amount of data assuming the
data is already partitioned across the machines. The algorithm usesO(max{n/m,m(k+z) log n})
memory on each machine.
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Finally, we perform experiments with both algorithms on real world datasets. For k-center we
observe that the quality of the solutions is effectively the same as that of the sequential algorithm for
all values of k—the best one could hope for. For the k-center problem with outliers our algorithm
matches the sequential algorithm as the values of k and z vary and it significantly outperforms the
algorithm which does not explicitly consider outliers. Somewhat surprisingly our algorithm achieves
an order of magnitude speed-up over the sequential algorithm even if it is run sequentially.

2 Preliminaries

Map-Reduce. We will consider algorithms in the distributed setting where our algorithms are given
m machines. We define our algorithms in a general distributed manner, but they particularly suited
to the MapReduce model [21]. This model has become widely used both in theory and in applied
machine learning [4, 5, 9, 12, 15, 21, 25, 27, 31]. In the MapReduce setting, algorithms run in
rounds. In each round the machines are allowed to run a sequential computation without machine
communication. Between rounds, data is distributed amongst the machines in preparation for new
computation. The goal is to design an algorithm which runs in a small number of rounds since
the main running time bottleneck is distributing the data amongst the machine between each round.
Generally it is assumed that each of the machines uses sublinear memory [21]. The motivation here
is that since MapReduce is used to process large data sets, the memory on the machines should be
much smaller than the input size to the problem. It is additionally assumed that there is enough
memory to store the entire dataset across all machines. Our algorithms fall into this category and
the memory required on each machine scales inversely with m.

k-center (with outliers) problem. In the problems considered, there is a universe U of n points.
Between each pair of points u, v ∈U there is a distance d(u, v) specifying their dissimilarity. The
points are assumed to lie in a metric space which implies that for all u, v, u′ ∈ U we have that 1.
d(u, u)=0, 2. d(u, v)=d(v, u), and 3. d(u, v)≤d(u, u′)+d(u′, v) (triangle inequality). For a set
X of points, we let dX(u) := minv∈X{d(u, v)} denote the minimum distance of a point u∈U to
any point in X . In the k-center problem, the goal is to choose a set of centers X of k points such
that maxv∈U dX(v) is minimized (i.e., dX(v) is the distance between v and its cluster center and we
would like to minimize the largest distance, across all points). In the k-center with outliers problem,
the goal is to choose a set X of k points and a set Z of z points such that maxv∈U\Z dX(v) is
minimized. Note that in this problem the algorithm simply needs to choose the set X as the optimal
set of Z points is well defined: It is the set of points in U farthest from the centers X .

Algorithm 1 Sequential k-center
GREEDY(U, k)

1: X = ∅
2: Add any point u ∈ U to X
3: while |X| < k do
4: u = argmaxv∈U dX(v)
5: X = X ∪ {u}
6: end while

Sequential algorithms The most widely used k-center (with-
out outliers) algorithm is the following simple greedy proce-
dure, summarized in pseudo-code in Algorithm 1. The algo-
rithm sets X = ∅ and then iteratively adds points from U to
X until |X| = k. At each step, the algorithm greedily se-
lects the farthest point in U from X , and then adds this point
to the updated set X . This algorithm is natural and efficient
and is known to give a 2-approximation for the k-center prob-
lem [20]. However, it is also inherently sequential and does
not lend itself to the distributed setting (except for very small
k). A naı̈ve MapReduce implementation can be obtained by finding the element v∈U to maximize
dX(v) in a distributed fashion (line 4 in Algorithm 1). This, however, requires k rounds of Map-
Reduce that must distribute the entire dataset each round. Therefore it is unsuitably inefficient for
many real world problems. The sequential algorithm for k-center with outliers is more complicated
due to the increased difficulty of the problem (for reference see: [10]). This algorithm is even more
fundamentally sequential than Algorithm 1.

3 k-Center in MapReduce

In this section we consider the k-center problem where no outliers are allowed. As mentioned
before, a similar variant of this problem has been previously studied in Mirzasoleiman et al. [25]
in the distributed setting. The work of Mirzasoleiman et al. considers submodular maximization
and showed a min{ 1k , 1

m}-approximation where m is the number of machines. Their algorithm
was shown to perform extremely well in practice (in a slightly modified clustering setup). The
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k-center problem can be mapped to submodular maximization, but the standard reduction is not
approximation preserving and their result does not imply a non-trivial approximation for k-center.
In this section, we give a natural interpretation of their algorithm without submodular maximization.

Algorithm 2 summarizes a distributed approach for solving the k-center problem. First the data
points of U are partitioned across allmmachines. Then each machine i runs the GREEDY algorithm
on the partition they are given to compute a set Ci of k points. These points are assigned to a
single machine, which runs GREEDY again to compute the final solution. The algorithm runs in two
MapReduce rounds and the only information communicated is Ci for each i if the data is already
assigned to machines. Thus, we have the following proposition.
Proposition 3.1. The algorithm GREEDY-MR runs in two MapReduce rounds and communicates
O(km) amount of data assuming the data is originally partitioned across the machines. The algo-
rithm uses O(max{n/m,mk}) memory on each machine.

Algorithm 2 Distributed k-center
GREEDY-MR(U, k)

1: Partition U into m equal sized sets U1, . . . , Um

where machine i receives Ui.
2: Machine i assigns Ci = GREEDY(Ui, k)
3: All sets Ci are assigned to machine 1
4: Machine 1 sets X = GREEDY(∪mi=1Ci, k)
5: Output X

We aim to bound the approximation ratio of
GREEDY-MR. Let OPT denote the optimal
solution value for the k-center problem. The
previous proposition and following lemma
give Theorem 1.1.
Lemma 3.2. The algorithm GREEDY-MR is
a 4-approximation algorithm.
Proof. We first show for any i that dCi

(u) ≤
2OPT for any u ∈ Ui. Indeed, say that this is
not the case for sake of contradiction for some i. Then for some u ∈ Ui, dCi

(u) > 2OPT which
implies u is distance greater than 2OPT from all points in Ci. By definition of GREEDY for any pair
of points v, v′ ∈ Ci it must be the case that d(v, v′) ≥ dCi(u) > 2OPT (otherwise u would have
been included in Ci). Thus, in the set {u} ∪ Ci there are k + 1 points all of distance greater than
2OPT from each other. However, then two of these points v, v′ ∈ ({u} ∪ Ci) must be assigned to
the same center v∗ in the optimal solution. Using the triangle inequality and the definition of OPT it
must be the case that d(v, v′) ≤ d(v∗, v) + d(v∗, v′) ≤ 2OPT, a contradiction. Thus, for all points
u ∈ Ui, it must be that dCi

(u) ≤ 2OPT.

LetX denote the output solution by GREEDY-MR. We can show a similar result for points in∪mi=1Ci

when compared to X . That is, we show that dX(u) ≤ 2OPT for any u ∈ ∪mi=1Ci. Indeed, say that
this is not the case for sake of contradiction. Then for some u ∈ ∪mi=1Ci, dX(u) > 2OPT which
implies u is distance greater than 2OPT from all points in X . By definition of GREEDY for any pair
of points v, v′∈∪mi=1Ci it must be that d(v, v′) ≥ dX(u) > 2OPT. Thus, in the set {u} ∪X there
are k+1 points all of distance greater than 2OPT from each other. However, then two of these points
v, v′ ∈ ({u}∪X) must be assigned to the same center v∗ in the optimal solution. Using the triangle
inequality and the definition of OPT it must be the case that d(v, v′) ≤ d(v∗, v)+d(v∗, v′) ≤ 2OPT,
a contradiction. Thus, for all points u ∈ ∪mi=1Ci, it must be that dX(u) ≤ 2OPT.

Now we put these together to get a 4-approximation. Consider any point u ∈ U . If u is in Ci for any
i, it must be the case that dX(u) ≤ 2OPT by the above argument. Otherwise, u is not inCi for any i.
Let Uj be the partition which u belongs to. We know that u is within distance 2OPT to some point
v ∈ Cj and further we know that v is within distance 2OPT from X from the above arguments.
Thus, using the triangle inequality, dX(u) ≤ d(u, v) + dX(v) ≤ 2OPT + 2OPT ≤ 4OPT.

4 k-center with Outliers
In this section, we consider the k-center with outliers problem and give the first MapReduce algo-
rithm for the problem. The problem is more challenging than the version without outliers because
one has to also determine which points to discard, which can drastically change which centers should
be chosen. Intuitively, the right algorithmic strategy is to choose centers such that there are many
points around them. Given that they are surrounded by many points, this is a strong indicator that
these points are not outliers. This idea was formalized in the algorithm of Charikar et al. [10], a
well-known and influential algorithm for this problem in the single machine setting.

Algorithm 3 summarizes the approach of Charikar et al. [10]. It takes as input the set of points
U , the desired number centers k and a parameter G. The parameter G is a ‘guess’ of the optimal
solution’s value. The algorithm’s performance is best when G = OPT where OPT denotes the
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optimal k-center objective after discarding z points. The number of outliers to be discarded, z, is
not a parameter of the algorithm and is communicated implicitly through G. The value of G can be
determined by doing a binary search on possible values ofG—between the minimum and maximum
distances of any two points.

Algorithm 3 Sequential k-center with outliers [10]
OUTLIERS(U, k,G)

1: U ′ = U , X = ∅
2: while |X| < k do
3: ∀u ∈ U ′ let Bu={v : v ∈ U ′, du,v ≤ G}
4: Let v′ = argmaxu∈U ′ |Bu|
5: Set X = X ∪ {v′}
6: Compute B′v′ ={v : v ∈ U ′, dv′,v ≤ 3G}
7: U ′ = U ′ \B′v′

8: end while

For each point u ∈ U , the set Bu contains
points within distance G of u. The algo-
rithm adds the point v′ to the solution set
which covers the largest number of points
withBv′ . The idea here is to add points which
have many points nearby (and thus largeBv′ ).
Then the algorithm removes all points from
the universe which are within distance 3G
from v′ and continues until k points are cho-
sen to be in the set X . Recall that in the out-
liers problem, choosing the centers is a well
defined solution and the outliers are simply the farthest z points from the centers. Further, it can
be shown that when G=OPT , after selecting the k centers, there are at most z outliers remaining
in U ′. It is known that this algorithm gives a 3-approximation [10]—however it is not efficient on
large or even medium sized datasets due to the computation of the sets Bu within each iteration. For
instance, it can take ≈ 100 hours on a data set with 45, 000 points.

We now give a distributed approach (Algorithm 4) for clustering with outliers. This algorithm is
naturally parallel, yet it is significantly faster even if run sequentially on a single machine. It uses a
sub-procedure (Algorithm 5) which is a generalization of OUTLIERS.

Algorithm 4 Distributed k-center with outliers
OUTLIERS-MR(U, k, z,G, α, β)

1: Partition U into m equal sized sets U1, . . . , Um

where machine i receives Ui.
2: Machines i sets Ci = GREEDY(Ui, k + z)
3: For each point c ∈ Ci, machine i set wc = |{v :
v ∈ Ui, d(v, c) = dCi

(v)}|+ 1
4: All sets Ci are assigned to machine 1 with the

weights of the points in Ci

5: Machine 1 sets X = CLUSTER(∪mi=1Ci, k,G)
6: Output X

The algorithm first partitions the points
across the m machines (e.g., set Ui goes
to machine i). Each machine i runs the
GREEDY algorithm on Ui, but selects k+z
points rather than k. This results in a set
Ci. For each c ∈ Ci, we assign a weight
wc that is the number of points in Ui that
have c as their closest point in Ci (i.e., if
Ci defines an intermediate clustering of Ui

then wc is the number of points in the c-
cluster). The algorithm then runs a vari-
ation of OUTLIERS called CLUSTER, de-
scribed in Algorithm 5, on only the points
in ∪mi=1Ci. The main differences are that
CLUSTER represents each point c by the number of points wc closest to it, and that it uses 5G and
11G for the radii in Bu and B′u.

Algorithm 5 Clustering subroutine
CLUSTER(U, k,G)

1: U ′ = U , X = ∅
2: while |X| < k do
3: ∀u ∈ U compute Bu = {v : v ∈ U ′, du,v ≤ 5G}
4: Let v′ = argmaxu∈U

∑
u′∈Bu

wu′

5: Set X = X ∪ {v′}
6: Compute B′v′ ={v : v ∈ U ′, dv′,v ≤ 11G}
7: U ′ = U ′ \B′v′

8: end while
9: Output X

The total machine-wise communica-
tion required for OUTLIERS-MR is
that needed to send each of the sets
Ci to Machine 1 along with their
weights. Each weight can have size at
most n, so it only requires O(log n)
space to encode the weight. This
gives the following proposition.
Proposition 4.1. OUTLIERS-MR
runs in two MapReduce rounds and
communicates O((k + z)m log n)
amount of data assuming the data
is originally partitioned across the
machines. The algorithm uses O(max{n/m,m(k + z) log n}) memory on each machine.

Our goal is to show that OUTLIERS-MR is an O(1)-approximation algorithm (Theorem 1.2). We
first present intermediate lemmas and give proof sketches, leaving intermediate proofs to the sup-
plementary material. We overload notation and let OPT denote a fixed optimal solution as well as
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the optimal objective to the problem. We will assume throughout the proof that G=OPT, as we can
perform a binary search to find Ĝ=OPT(1 + ε) for arbitrarily small ε>0 when running CLUSTER
on a single machine. We first claim that any point in Ui is not too far from any point in Ci.
Lemma 4.2. For every point u ∈ Ui it is the case that dCi

(u) ≤ 2OPT for all 1 ≤ i ≤ m.

Given the above lemma, letO1, . . . , Ok denote the clusters in the optimal solution. A cluster in OPT
is defined as a subset of the points in U , not including outliers identified by OPT, that are closest to
some fixed center chosen by OPT. The high level idea of our proof is similar to that used in [10].
Our goal is to show that when our algorithm choses each center, the set of points discarded from U ′

in CLUSTER can be mapped to some cluster in the optimal solution. At the end of CLUSTER there
should be at most z points in U ′, which are the outliers in the optimal solution. Knowing that we
only discard points from U ′ close to centers we choose, this will imply the approximation bound.

For every point u ∈ U , which must fall into some Ui, we let c(u) denote the closest point in Ci to u
(i.e., c(u) is the closest intermediate cluster center found by GREEDY to u). Consider the output of
CLUSTER, X = {x1, x2, . . . , xk}, ordered by how elements were added to X . We will say that an
optimal cluster Oi is marked at CLUSTER iteration j if there is a point u ∈ Oi such that c(u) /∈ U ′
just before xj is added to X . Essentially if a cluster is marked, we can make no guarantee about
covering it within some radius of xj (which will then be discarded). Figure 1 shows examples where
Oi is (and is not) marked. We begin by noting that when xj is added to X that the weight of the
points removed from U ′ is at least as large as the maximum number of points in an unmarked cluster
in the optimal solution.
Lemma 4.3. When xj is added, then

∑
u′∈Bxj

wu′≥|Oi| for any unmarked cluster Oi.

markedOi

unmarkedOi

Oi

u

c(u)

U 0

9
v

c(v)c(v0)

v0

deleted from U 0

Oi

c(u)

U 0

v

c(v)c(v0)

v0
u8

Figure 1: Examples
in which Oi is/is
not marked.

Given this result, the following lemma considers a point v that is in some
cluster Oi. If c(v) is within the ball Bxj for xj added to X , then intuitively,
this means that we cover all of the points in Oi with B′xj

. Another way to say
this is that after we remove the ball B′xj

, no points in Oi contribute weight to
any point in U ′.
Lemma 4.4. Consider that xj is to be added to X . Say that c(v) ∈ Bxj

for
some point v ∈ Oi for some i. Then, for every point u ∈ Oi either c(u) ∈ B′xj

or c(u) has already been removed from U ′.

See the supplementary material for the proof. The final lemma below states
that the weight of the points in ∪xi:1≤i≤kB

′
xi

is at least as large as the number
of points in ∪ 1≤i≤kOi. Further, we know that | ∪ 1≤i≤k Oi| = n − z since
OPT has z outliers. Viewing the points in B′xi

as being assigned to xi in the
algorithm’s solution then this shows that the number of points covered is at
least as large as the number of points that the optimal solution covers. Hence,
there cannot be more than z points uncovered by our algorithm.

Lemma 4.5.
∑k

i=1

∑
u∈B′

xi

wu ≥ n− z

Finally, we are ready to complete the proof of Theorem 1.2.

Proof of [Theorem 1.2] Lemma 4.5 implies that the sum of the weights of the
points which are in ∪xi:1≤i≤kB

′
xi

are at least n− z. We know that every point u contributes to the
weight of some point c(u) which is in Ci for 1 ≤ i ≤ m and by Lemma 4.2 d(u, c(u)) ≤ 2OPT.
We map every point u∈U to xi, such that c(u) ∈ B′xi

. By definition of B′xi
and Lemma 4.2 it is

the case d(u, xi) ≤ 13OPT by the triangle inequality. Thus, we have mapped n− z points to some
point in X within distance 13OPT. Hence, our algorithm discards at most n−z points and achieves
a 13-approximation. With Proposition 4.1 we have shown Theorem 1.2. 2

5 Experiments

We evaluate the real-world performance of the above clustering algorithms on seven clustering
datasets, described in Table 1. We compare all methods using the k-center with outliers objective, in
which z outliers may be discarded. We begin with a brief description of the clustering methods we
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Table 1: The clustering datasets (and their descriptions) used for evaluation.
name description n dim.

Parkinsons [28] patients with early-stage Parkinson’s disease 5, 875 22
Census1 census household information 45, 222 12

Skin1 RGB-pixel samples from face images 245, 057 3
Yahoo [11] web-search ranking dataset (features are GBRT outputs [29]) 473, 134 500
Covertype1 a forest cover dataset with cartographic features 522, 911 13

Power1 household electric power readings 2, 049, 280 7
Higgs1 particle detector measurements (the seven ‘high-level’ features) 11, 000, 000 7

compare. We then show how the distributed algorithms compare with their sequential counterparts
on datasets small enough to run the sequential methods, for a variety of settings. Finally, in the
large-scale setting, we compare all distributed methods for different settings of k.

Methods. We implemented the sequential GREEDY and OUTLIERS and distributed GREEDY-MR
[25] and OUTLIERS-MR. We also implemented two baseline methods: RANDOM|RANDOM: m
machines randomly select k+z points, then a single machine randomly selects k points out of the
previously selectedm(k+z) points; RANDOM|OUTLIERS: mmachines randomly select k+z points,
then OUTLIERS (Algorithm 4) is run over them(k+z) points previously selected; All methods were
implemented in MATLABTM and conducted on an 8-core Intel Xeon 2 GHz machine.
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Figure 2: The performance of sequential and distributed methods. We plot the objective value of
four small datasets for varying k, z, and m.

Sequential vs. Distributed. Our first set of experiments evaluate how close the proposed distributed
methods are to their sequential counterparts. To this end, we vary all parameters: number of centers
k, number of outliers z, and the number of machines m. We consider datasets for which computing
the sequential methods is practical: Parkinsons, Census and two random subsamples (10, 000 inputs
each) of Covertype and Power. We show the results in Figure 2. Each column contains the results for
a single dataset and each row for a single varying parameter (k, z, or m), along with standard errors
over 5 runs. When a parameter is not varied we fix k=50, z=256, and m=10. As expected, the
objective value for all methods generally decreases as k increases (as the distance of any point to its
cluster center must shrink with more clusters). RANDOM|RANDOM and RANDOM|OUTLIERS usu-
ally perform worse than GREEDY-MR for small k (save 10k Covertype) and RANDOM|OUTLIERS

1https://archive.ics.uci.edu/ml/datasets/

7



20 40 60 80 100
0

20

40

60

80

100
m=10, z=256

k
20 40 60 80 100

1

1.2

1.4

1.6

1.8

2

2.2

2.4
m=10, z=256

k
20 40 60 80 100

0

50

100

150

200

250
m=10, z=256

k

Covertype Power

ob
je

ct
iv

e 
va

lu
e

Skin

20 40 60 80 100
0.15

0.2

0.25

0.3
m=10, z=256

k

Yahoo

20 40 60 80 100
0

5

10

15

20
m=10, z=256

k

Higgs

number of clusters: k

Random | Random
Random | Outliers
Greedy-MR
Outliers-MR

Figure 3: The objective value of five large-scale datasets, for varying k

sometimes matches it for large k. For all values of k tested, OUTLIERS-MR outperforms all other
distributed methods. Furthermore, it matches or slightly outperforms (which we attribute to ran-
domness) the sequential OUTLIERS method in all settings. As z increases the two random methods
improve, beyond GREEDY-MR in some cases. Similar to the first plot, OUTLIERS-MR outperforms
all other distributed methods while matching the sequential clustering method. For very small set-
tings of m (i.e., m=2, 6), OUTLIERS-MR and GREEDY-MR perform slightly worse than sequen-
tial OUTLIERS and GREEDY. However, for practical settings of m (i.e., m≥ 10), OUTLIERS-MR
matches OUTLIERS and GREEDY-MR matches GREEDY. In terms of speed, on the largest of these
datasets (Census) OUTLIERS-MR run sequentially is more than 677× faster than OUTLIERS, see
Table 2. This large speedup is due to the fact that we cannot store the full distance matrix for Census,
thus all distances need to be computed on demand.

Table 2: The speedup of the distributed algo-
rithms, run sequentially, over their sequential
counterparts on the small datasets.

dataset k-center outliers
10k Covertype 3.6 6.2
10k Power 4.8 9.4
Parkinson 4.9 4.4

Census 12.4 677.7

Large-scale. Our second set of experiments
focus on the performance of the distributed
methods on five large-scale datasets, shown
in Figure 3. We vary k between 0 and
100, and fix m = 10 and z = 256. Note
that for certain datasets, clustering while tak-
ing into account outliers produces a notice-
able reduction in objective value. On Ya-
hoo, the GREEDY-MR method is even outper-
formed by RANDOM|OUTLIERS that considers
outliers. Similar to the small dataset results
OUTLIERS-MR outperforms nearly all distributed methods (save for small k on Covertype). Even
on datasets where there appear to be few outliers OUTLIERS-MR has excellent performance. Fi-
nally, OUTLIERS-MR is extremely fast: clustering on Higgs took less than 15 minutes.

6 Conclusion

In this work we described algorithms for the k-center and k-center with outliers problems in the dis-
tributed setting. For both problems we studied two round MapReduce algorithms which achieve an
O(1)-approximation and demonstrated that they perform almost identically to their sequential coun-
terparts on real data. Further, a number of our experiments validate that using k-center clustering
on noisy data degrades the quality of the solution. We hope these techniques lead to the discovery
of fast and efficient distributed algorithms for other clustering problems. In particular, what can be
shown for the k-median or k-means with outliers problems are exciting open questions.
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