NIPS Proceedingsβ

Online F-Measure Optimization

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

A note about reviews: "heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

[PDF] [BibTeX] [Supplemental] [Reviews]

Authors

Conference Event Type: Poster

Abstract

The F-measure is an important and commonly used performance metric for binary prediction tasks. By combining precision and recall into a single score, it avoids disadvantages of simple metrics like the error rate, especially in cases of imbalanced class distributions. The problem of optimizing the F-measure, that is, of developing learning algorithms that perform optimally in the sense of this measure, has recently been tackled by several authors. In this paper, we study the problem of F-measure maximization in the setting of online learning. We propose an efficient online algorithm and provide a formal analysis of its convergence properties. Moreover, first experimental results are presented, showing that our method performs well in practice.