## A fast, universal algorithm to learn parametric nonlinear embeddings

Part of: Advances in Neural Information Processing Systems 28 (NIPS 2015)

[PDF] [BibTeX] [Supplemental] [Reviews]A note about reviews:"heavy" review comments were provided by reviewers in the program committee as part of the evaluation process for NIPS 2015, along with posted responses during the author feedback period. Numerical scores from both "heavy" and "light" reviewers are not provided in the review link below.

### Authors

### Conference Event Type: Poster

### Abstract

Nonlinear embedding algorithms such as stochastic neighbor embedding do dimensionality reduction by optimizing an objective function involving similarities between pairs of input patterns. The result is a low-dimensional projection of each input pattern. A common way to define an out-of-sample mapping is to optimize the objective directly over a parametric mapping of the inputs, such as a neural net. This can be done using the chain rule and a nonlinear optimizer, but is very slow, because the objective involves a quadratic number of terms each dependent on the entire mapping's parameters. Using the method of auxiliary coordinates, we derive a training algorithm that works by alternating steps that train an auxiliary embedding with steps that train the mapping. This has two advantages: 1) The algorithm is universal in that a specific learning algorithm for any choice of embedding and mapping can be constructed by simply reusing existing algorithms for the embedding and for the mapping. A user can then try possible mappings and embeddings with less effort. 2) The algorithm is fast, and it can reuse N-body methods developed for nonlinear embeddings, yielding linear-time iterations.